
ActiveX Reference Manual

 Updated: 3/3/2022

ActiveX Reference Manual

Copyright

©2000-2019 Tucker-Davis Technologies, Inc. (TDT). All rights reserved.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying and recording, for any purpose without the express written

permission of TDT.

Licenses and Trademarks

Windows is registered trademarks of Microsoft Corporation.

i

Table of Contents

Before You Begin:... 1

Requirements .. 1

ActiveX Updates .. 1

Organization of the Manual .. 1

TDT ActiveX Overview .. 3

The ActiveX Controls ... 3

Controlling TDT Real-Time Processors using the RPcoX ActiveX Controls .. 3

Using ActiveX with Common Programming Languages .. 5

MATLAB ActiveX ... 5

Interfacing with TDT Devices through ActiveX Controls ... 5

RP Example Programs .. 6

Using ActiveX Controls With More Than One TDT Module .. 7

Using Older Versions of MATLAB ... 7

Visual Basic ActiveX ... 8

Interfacing with TDT Devices through ActiveX Controls ... 8

Adding ActiveX Controls in VB.NET.. 8

Visual C++ ActiveX ..13

Interfacing with TDT Devices through ActiveX Controls ..13

Adding ActiveX Controls in VC++ ...13

Adding a Member Variable ...16

Programming Multiple Modules..17

Visual C++ Examples ..17

Delphi Function Headers ...18

Working with Control Object Files (*.rco and *.rcx) ..20

ActiveX Reference Manual

ii

Creating an RCO for Legacy Formats ...20

RPcoX Real-Time Processor Control ..23

About the RPcoX Methods ..23

Device Connection ..23

ConnectRP2 ...23

ConnectRA16 ..24

ConnectRL2 ...25

ConnectRV8 ..25

ConnectRM1 ...26

ConnectRM2 ...27

ConnectRX5 ..27

ConnectRX6 ..28

ConnectRX7 ..29

ConnectRX8 ..30

ConnectRZ2 ...30

ConnectRZ5 ...31

ConnectRZ6 ...32

File and Program Control ..33

About the File and Program Control Methods...33

ClearCOF...33

LoadCOF ...33

LoadCOFsf ..34

ReadCOF ...36

Run ..36

Halt ..37

Table of Contents

iii

Device Status ...38

About the Device Status Methods ...38

GetStatus ...38

GetCycUse ...40

GetSFreq ..40

GetNumOf ...41

GetNameOf ...41

Tag Status and Manipulation ...42

About the Tag Status and Manipulation Methods ...42

GetTagVal ...43

GetTagType ...43

GetTagSize ..44

ReadTag...44

ReadTagV ..45

ReadTagVEX ..45

SetTagVal ..47

WriteTag ..47

WriteTagV ...48

WriteTagVEX ...49

ZeroTag ...50

Other ..50

GetDevCfg ...50

SetDevCfg ...51

SoftTrg...53

SendParTable ...53

ActiveX Reference Manual

iv

SendSrcFile ...54

PA5 Programmable Attenuator ...57

About the PA5x Methods ..57

ConnectPA5 ...57

Display...58

GetError ...58

GetAtten ..59

Reset ..59

SetAtten ...59

SetUser ..60

zBUS Device ...63

About the zBUSx Methods ..63

ConnectZBUS ...63

FlushIO ..64

GetDeviceAddr ..64

GetDeviceVersion ...65

GetError ...65

HardwareReset ..66

zBusTrigA/zBusTrigB ...67

zBusSync ...68

ActiveX Examples ..69

MATLAB Examples ...70

MATLAB Example: Circuit Loader ..70

MATLAB Example: Device Checker ...71

MATLAB Example: Band Limited Noise ...72

Table of Contents

v

MATLAB Example: Continuous Acquire ...74

MATLAB Example: Continuous Play ...77

MATLAB Example: FIR Filtered Noise ...80

MATLAB Example: Two Channel Acquisition with ReadTagVEX ..81

MATLAB example: Two Channel Play with WriteTagVEX ..83

Visual C++ Examples ..85

Visual C++ Example: Circuit Loader ..85

Visual C++ Example: Band Limited Noise ...87

Visual C++ Example: Continuous Acquire ...90

Visual C++ Example: Continuous Play ...93

Visual C++ Example: TDT ActiveX Console ...96

Revision History ..99

Known Anomalies ..101

Index ...103

1

Before You Begin:

Requirements

TDT Drivers must be installed before installing TDT ActiveX Controls.

The recommended operating systems for all TDT systems are Windows® 7 and 10.

Note: Version 7.4 and greater installations include both 32-bit and 64-bit versions of the activeX

controls.

ActiveX Updates

Always ensure that you are using the same versions of ActiveX and the TDT Drivers. The version

numbers should always be the same. To avoid problems, always upgrade TDT Drivers whenever

you upgrade ActiveX. See the Revision History, page 99, for information about revisions and

updates to the TDT ActiveX library.

Organization of the Manual

This manual is organized in the following sections:

➢ Overview

➢ Language Specific Essentials

➢ RPcoX Real-Time Processor Control

➢ PA5 Programable Attenuator Controls

➢ ZBus Device Controls

➢ Examples

3

TDT ActiveX Overview

TDT's ActiveX Controls provide a simple and powerful way to control TDT System 3 hardware

modules from custom software applications running on a PC. ActiveX controls can be run from

within an application program written in programming languages such as MATLAB, Visual

Basic, Delphi, or Visual C++.

The ActiveX Controls

The TDT ActiveX programming library includes three ActiveX controllers: RPcoX, PA5x, and

ZBUSx.

RPcoX

The RPcoX controller includes a versatile group of methods for the Classic Real-Time Processors

(RP), Mobile Processors (RM), High Performance Processors (RX), and the Z-series Processors

(RZ); making it possible to connect to hardware, load and run the RCO circuits on the hardware,

and allow for flexible real-time control of the circuits loaded to the hardware.

PA5x

The PA5x controller includes methods for real-time control of the PA5 front panel parameters,

such as attenuation and attenuation stepsize.

ZBUSx

The zBUSx controller includes methods that allow access to zBus control functions; such as

flushing the IO, resetting the hardware, and triggering a zBus rack.

Controlling TDT Real-Time Processors using the
RPcoX ActiveX Controls

Some of the most powerful ActiveX methods are those that interact with the processing chains as

they are executed on TDT real-time processors. The processing chain—the most basic instructions

used to control a processor are designed in RPvdsEx and saved as a Control Object, either as a

Control Object File (*.rco) or embedded in the RPvds Circuit File (*.rcx). These files also contain

special components called "parameter tags" that can be accessed via TDT ActiveX controls to

implement real-time control. For more on RCOs, see page 20.

5

Using ActiveX with Common
Programming Languages

Each programming language implements ActiveX controls differently. This section provides a

brief explanation of programming using ActiveX controls with:

➢ MATLAB

➢ MSVC++

➢ Visual Basic

➢ Delphi

This manual also includes examples that demonstrate how to implement the TDT ActiveX

controllers for MATLAB, MSVC++, and Visual Basic.

MATLAB ActiveX

MATLAB versions 5.3 and above support ActiveX controls. The primary MATLAB method call

for using ActiveX controls is:

This method adds an ActiveX control to your program. Once the ActiveX control has been

instantiated all of its ActiveX methods can be used.

Interfacing with TDT Devices through ActiveX Controls

The following three calls will get a circuit running on the processor device:

➢ Connect(device type) - establishes a connection with the processor device

➢ LoadCOF - loads a Control Object file

➢ Run - runs the circuit

Example Code

Creates an ActiveX Control for the processor

device, the second argument controls the

placement of the icon in the MATLAB figure.

The figure must remain open for ActiveX

control methods to be called.

Calls the Connect function to the RP2 (a

member of the RPx family) using the ActiveX

control. Connects to the first RP2 via the

Optical Gigabit port.

Loads a processor device Control Object (*.rco

or *.rcx) file.

ActiveX Reference Manual

6

Starts the processor device processing chain.

Included with the ActiveX help are several examples of programs using the ActiveX controls with

the RP2. Other TDT processor devices may be used with these example files by modifying the

example code to connect to the specified device. We have also included the circuit Control Object

File (*.rcx). The examples include programs written for versions newer than MATLAB 6.0,

specifically R13 and R14. If you are using an older version of MATLAB such as R12, please

review the example files that were designed for older releases of MATLAB.

RP Example Programs

Circuit Loader, page 70

Demonstrates the basic ActiveX methods that are part of any program. The program starts an

ActiveX control, connects to an RP2, and loads an *.rco or *.rcx file and runs it.

Methods used: ConnectRP2, ClearCOF, LoadCOF, Run, GetStatus

Device Checker, page 71

Checks the components in a circuit that has been loaded and is running.

Methods used: GetCycUse, GetNumOf, GetNameOf, GetTagType, GetTagSize

Band-limited Noise, page 72

Uses parameter tags to control the frequency and intensity of filtered noise.

Methods used: SetTagVal, GetTagVal

Continuous Play , page 77

Plays a continuous set of tones generated in MATLAB.

Methods used: WriteTagV, SoftTrg, GetTagVal

Continuous Acquire, page 74

Stores one channel of stream data to an f32 file.

Methods used: ReadTagV, SoftTrg, GetTagVal

FIR Filtered Noise, page 80

Uses a noise component on the DSP to generate and filter it through an FIR.

Methods used: SendSrcFile, SendParTable

Two Channel Continuous Acquire, page 81

Stores two channels of streaming data to a f32 file using ReadTagVEX.

Methods used: ReadTagVEX, SoftTrg, GetTagVal

Using ActiveX with Common Programming Languages

7

Two Channel Continuous Play, page 83

Plays two sets of tones out of two DACs.

Methods used: WriteTagVEX

Using ActiveX Controls With More Than One TDT Module

When using ActiveX controls with multiple processor devices, create a separate ActiveX control

for each module. For example, in the example code below the user can add code to talk to a

different processor device by creating a second control with a different MATLAB handle (i.e.

RP2_2 instead of RP2_1):

Using Older Versions of MATLAB

If using versions of MATLAB greater than release 12, the invoke() method is not required. If

using MATLAB R12 or prior releases, the invoke() method is required. Examples of how the

ConnectRP2 method should be called in older MATLAB releases are shown below.

Calls the ActiveX methods used with a control object file (*.rco or *.rcx).

Important!: MATLAB 6.0 (R12) requires that all variables that are to be used in numerical

operations be cast as Doubles. These operations include: +,-,.*,./,.^,: and others. Compare

statements such as <,>,== do not need the variable to be of type double. Changing your MATLAB

code to work with MATLAB 6.0 (R12) requires that you cast the variables as DOUBLE.

MATLAB 7 (R14) supports math on integer and single-precision data.

For example:

should be changed to

ActiveX Reference Manual

8

Visual Basic ActiveX

Visual Basic supports ActiveX controls through a graphical interface. Controls are placed into

frames in the same way that buttons and text boxes are added. The programmer then controls the

circuit through calls to the ActiveX module. To use the ActiveX components for the Real-time

processor family (RPcoX), the PA5 (PA5x), and the zBus (ZBUSx) you add them to your Visual

Basic Program.

Interfacing with TDT Devices through ActiveX Controls

The following three calls will get a circuit running on the processor device:

➢ Connect(device type) - establishes a connection with the processor device

➢ LoadCOF - loads a Control Object file

➢ Run - runs the circuit

Example Code:

Calls the Connect method to the RP2 (a

member of the RP family) using the ActiveX

control. Connects to the first RP2 via the

Optical Gigabit port.

Clears any circuit on the RP2 processor

device.

Loads a processor device Control Object

.RCO (.rco or *.rcx) File.

Starts the processor device's processing

chain.

Adding ActiveX Controls in VB.NET

Visual Basic supports ActiveX controls through a graphical interface. Controls are placed into

frames in the same way that buttons and text boxes are added. The programmer then controls the

circuit through calls to the ActiveX module. To use the ActiveX components for the Real-time

processor family (RPcoX), the PA5 (PA5x), and the zBus (ZBUSx) you add them to your Visual

Basic Program. To use ActiveX in VB.NET you'll need to add the desired control to the Toolbox

To add an ActiveX Control in VB.NET:

1. Create a new Windows Application by selecting Visual Basic from the Project Types

dialog box to the left.

Using ActiveX with Common Programming Languages

9

2. To display the Toolbox, Select Toolbox from the View menu.

ActiveX Reference Manual

10

3. Next, add an ActiveX control, right-click in the General tab of the Toolbox and select

Choose Items.

4. In the dialog box, click the COM Components tab. Scroll down the list and select the

RPcoX Control check box, then click OK.

Using ActiveX with Common Programming Languages

11

5. The General tab of the Toolbox should now contain the RPcoX control.

6. Click and drag the RPcoX control to your form.

ActiveX Reference Manual

12

The default name for the new RPcoX control component is AxRPcoX1.

7. Repeat the steps above for any other TDT ActiveX control you wish to add (i.e. PA5x,

ZBUSx).

Displaying ActiveX Control Methods

In the code editor, type the name of the ActiveX control component (in this case AxRPcoX1)

followed by a period to obtain a listing of the available methods and variable properties associated

with that device.

Programming Multiple Modules

Each module should have its own ActiveX Control and its own variable. For example, to control

two PA5 modules, insert two PA5x Controls. Each control will get its own variable.

Using ActiveX with Common Programming Languages

13

Visual C++ ActiveX

Visual C++ supports ActiveX controls through a graphical interface. Controls are placed into

frames in the same way that buttons and text boxes are added. The programmer then controls the

circuit through calls to the ActiveX module. To use the ActiveX components for the Real-time

processor family (RPcoX), the PA5 (PA5x), and the zBus (ZBUSx) you add them to your Visual

C++ Program.

For Adding ActiveX Controls in VC++, see page 13.

Interfacing with TDT Devices through ActiveX Controls

The following three calls will get a circuit running on the processor device:

➢ Connect (device type) - establishes a connection with the processor device

➢ LoadCOF - loads a Control Object file

➢ Run - runs the circuit

Example Code:

Calls the Connect method to the RP2 (a

member of the RP family) using the

ActiveX control. Connects to the first RP2

via the Optical Gigabit port.

Clears any circuit on the RP2 processor

device.

Loads a processor device Control Object

.RCO (.rco or *.rcx) File.

Starts the processor device's processing

chain.

Adding ActiveX Controls in VC++

To use the TDT ActiveX controls with Visual C++, you need to make a project that uses MFC

with ActiveX support. The easiest way to do this is to use the MFC Application Wizard. Make

sure that support for ActiveX controls is enabled (it should be enabled by default). Then you will

be able to add ActiveX controls to the dialog and make member variables for them using

ClassWizard (see below for more details). This example assumes you are creating the ActiveX

Control in a dialog box.

To use ActiveX in VC++:

1. Create a project that uses an MFC Application with ActiveX support. Make sure that

support for ActiveX controls is enabled (it should be enabled by default). Then you will

be able to add ActiveX controls to the dialog and make member variables for them.

ActiveX Reference Manual

14

2. Follow the steps defined in the project wizard to create your MFC Application.

3. Under Application type, select the Dialog based radio button and click Finish.

4. Under the Resource View dialog box, expand the Dialog folder and double click on

IDD_YourProjectName_DIALOG.

Using ActiveX with Common Programming Languages

15

The dialog pane editor will then be shown in the workspace.

5. Right-click inside the blue dotted line on the dialog box and select Insert ActiveX

Control from the menu.

6. Scroll down the list until you reach the desired ActiveX control (i.e. RPcoX, PA5x, or

ZBUSx).

7. Click OK.

8. Drag the ActiveX control component to your dialog pane and place it in the desired

location.

ActiveX Reference Manual

16

Adding a Member Variable

Right-click on the ActiveX control and select Add Variable. When you add a variable for the

control, VC++ will create a Class wrapper for the control.

These variables are then used to call the ActiveX functions as shown below.

Using ActiveX with Common Programming Languages

17

Programming Multiple Modules

Each module should have its own ActiveX Control and its own variable. For example, to control

two PA5 modules, insert two PA5x Controls and add a member variable for each PA5 control.

Visual C++ Examples

Included with the ActiveX help are several examples of programs using the ActiveX controls with

the RP2. Other TDT processor devices may be used with these example files by modifying the

example code to connect to the specified device. We have included the circuit design file *.rcx.

Circuit Loader, page 85

Demonstrates the basic ActiveX methods that are part of any program: The program starts an

ActiveX control, connects to an RP2, loads a *.RCO (*.rco or *.rcx) file and runs it.

Methods used: ConnectRP2, LoadCOF, Run

Band Limited Noise, page 87

Uses parameter tags to control the frequency and intensity of filtered noise.

Methods used: ConnectRP2, ClearCOF, LoadCOF, GetStatus, Run, Halt, SetTagVal, GetTagVal,

GetCycUse

Continuous Acquire, page 90

Continously acquires data and stores it on the PC at 100kH. Generates the file fnoise2.f32

Methods used: ReadTag, SoftTrg, GetTagVal

Continuous Play, page 93

Continuously plays sounds out of the RP2 that have been generated on the PC.

Methods used: WriteTag, SoftTrg, GetTagVal,GetTagSize

TDT ActiveX Console, page 96

Demonstrates the usage of the system console by connecting to an RP2, loads a *.RCO (*.rco or

*.rcx) file and runs it.

Methods used: ConnectRP2, ClearCOF, LoadCOF, Run

ActiveX Reference Manual

18

Delphi Function Headers

All functions behave exactly the same in Delphi as they do in other programming languages.

Users should refer to the RpcoX, PA5x, and ZBUSx sections of the ActiveX Help for details on

how each function works. To determine the Delphi data types for each function and parameter,

refer to the list below.

RpcoX

Using ActiveX with Common Programming Languages

19

ZbusX

PA5x

ActiveX Reference Manual

20

Working with Control Object Files (*.rco and *.rcx)

The Control Object File contains an object-oriented description of the circuit. When the circuit is

loaded and run the Control Object File provides an interface between the processor device and the

program using the Control Object (*.rco or *.rcx) File.

Once you have generated the circuit you can test it by running it within RPvdsEx. To check for

problems Compile, Load, and Run the circuit before saving it as a Control Object File.

Note: The default preference for RPvdsEx is to embed the Control Object into an *.rcx file.

RPvdsEx files that are compiled in this embedded format generate only one file (*.rcx) that has

both the Control Object and Circuit Graphic file information.

Legacy formats use separate files for the Control Object and Circuit Graphic information.

RPvdsEx preferences can be set to generate both an *.rpx and *.rco file for use with legacy

formats.

Creating an RCO for Legacy Formats

To change the preferences in RPvdsEx for Legacy formats:

1. Click Preferences on the Edit menu.

2. Click to clear the Embed RCO object file checkbox.

3. Click OK.

To save the file as a Control Object File:

1. Once the preferences above have been set, Click Build Control Object on the

Implement menu or click the Build Control Object toolbar button.

Using ActiveX with Common Programming Languages

21

2. In the Save As dialog box, enter a file name then click Save.

The saved *.rco file can be used by any program compatible with TDT's ActiveX

controls (e.g. Matlab, Visual Basic).

23

RPcoX Real-Time Processor Control

About the RPcoX Methods

This section provides a listing of the available RPcoX ActiveX control methods.

Programming Steps:

➢ Add the RPcoX ActiveX controller to your program. The ActiveX help has examples for

setting up ActiveX controllers in MATLAB, Visual Basic, and Visual C.

➢ Connect to a TDT processor (USB or GB) device with the matching device Connect

function (i.e. for an RP2 use ConnectRP2).

➢ Control the device with the command and control functions using the ActiveX controller.

Device Connection

The device connection methods are used to establish an RPcoX ActiveX control to the desired

device.

Important: The ‘GB’ argument is correct for the ‘Optical Gigabit’ interfaces, commonly referred

to as Optibit. The PI5/FI5 are no longer supported in the current version of TDT Drivers and

ActiveX.

ConnectRP2

Description: Establishes a connection with an RP2 or RP2.1 Real-time Processor through a

device interface (such as Optical Gigabit or USB). A device number identifies

which RP2 is connected.

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/FO5

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts upward

for each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

ActiveX Reference Manual

24

Sample Code:

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

ConnectRA16

Description: Establishes a connection with the Medusa Base Station (RA16BA) via the

Gigabit or USB bus interface. Invoking this method causes the control to search

for the 16-channel preamplifier typically connected to the base station and

establish a handle to the associated device driver. The ConnectRA16 method

will return 1 if a connection was successfully established or 0 if the device is not

present or is not functioning properly.

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/FO5

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts upward

for each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

RPcoX Real-Time Processor Control

25

ConnectRL2

Description: Establishes a connection with the Stingray Docking Station (RL2) via the

Gigabit or USB bus interface. Invoking this method causes the control to search

for the specified device and establish a handle to the associated device driver.

The ConnectRL2 method will return 1 if a connection was successfully

established or 0 if the device is not present or is not functioning properly.

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/FO5

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts upward

for each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

ConnectRV8

Description: Establishes a connection with the Barracuda Processor (RV8) through the

Gigabit or USB interface. Invoking this method causes the control to search for

the Barracuda and establish a handle to the associated device driver. The

ConnectRV8 method will return 1 if a connection was successfully established

or 0 if the device is not present or is not functioning properly.

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/FO5

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts upward

for each device of a specified type.

ActiveX Reference Manual

26

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

Visual Basic

ConnectRM1

Description: Establishes a connection with a Mini Processor (RM1) using the device's built in

USB interface.

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'USB' USB Internal

long DevNum Logical device number. Starts with 1 and counts upward

for each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB:

Visual Basic:

RPcoX Real-Time Processor Control

27

ConnectRM2

Description: Establishes a connection with a Mobile Processor (RM2) using the device's

built-in USB interface.

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'USB' USB Internal

long DevNum Logical device number. Starts with 1 and counts upward

for each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

Visual Basic

ConnectRX5

Description: Establishes a connection with a Pentusa Base Station (RX5) through a device

interface (such as Gigabit or USB).

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

ActiveX Reference Manual

28

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/FO5

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts up for

each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

ConnectRX6

Description: ConnectRX6 establishes a connection with a MultiFunction Processor (RX6)

through a device interface (such as Gigabit or USB).

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/FO5

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts up for

each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

RPcoX Real-Time Processor Control

29

Sample Code:

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

ConnectRX7

Description: Establishes a connection with a MicroStimulator Base Station (RX7) through a

device interface (such as Gigabit or USB).

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/FO5

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts up for

each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

Visual Basic

ActiveX Reference Manual

30

Example: Circuit Loader, page 70.

ConnectRX8

Description: Establishes a connection with a Multi I/O Processor (RX8) through a device

interface (such as Gigabit or USB).

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/FO5

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts up for

each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

ConnectRZ2

Description: Establishes a connection with a RZ2 Base Station through a device interface

(such as Gigabit or Optibit).

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/PO5e

RPcoX Real-Time Processor Control

31

 'USB3' USB 3.0 UZ3

long DevNum Logical device number. Starts with 1 and counts up for

each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

ConnectRZ5

Description: Establishes a connection with a RZ5 Base Station through a device interface

(such as Gigabit or Optibit).

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/PO5e

 'USB3' USB 3.0 UZ3

long DevNum Logical device number. Starts with 1 and counts up for

each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

ActiveX Reference Manual

32

Sample Code:

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

ConnectRZ6

Description: Establishes a connection with a RZ6 Base Station through a device interface

(such as Gigabit or Optibit).

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/PO5e

 'USB3' USB 3.0 UZ3

long DevNum Logical device number. Starts with 1 and counts up for

each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

 Note: Invoke device connect commands only once to connect to a device, and

then use ClearCOF and LoadCOF commands to upload or reload the control

object to implement changes to the signal.

Sample Code:

MATLAB

Visual Basic

RPcoX Real-Time Processor Control

33

Example: Circuit Loader, page 70.

File and Program Control

About the File and Program Control Methods

The file and program methods are used to load or clear a COF (Control Object File), run the

device's processing chain, or halt the device's processing chain.

File Methods

➢ ClearCOF

➢ LoadCOF

➢ LoadCOFsf

➢ ReadCOF

Program Control Methods

➢ Run

➢ Halt

ClearCOF

Description: Clears the program and data buffers on the processor.

'C' Prototype:

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code:

Description: Clears the Control Object File (COF) and the data buffers on the processor

device.

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

LoadCOF

Description: Loads the Control Object File (*.rco or *.rcx) to the proper ActiveX control.

This function/method is run after a Connectxx call and clears anything in the

memory buffers on the processor device. See ReadCOF for information about

ActiveX Reference Manual

34

establishing a connection between an ActiveX handle and a COF without

clearing a device's memory buffers.

 Note: LoadCOF loads the Control Object File in real time allowing programs to

utilize multiple Control Object Files if needed.

'C' Prototype:

Arguments:

LPCTSTR *.rco file or *.rcx File name and extension

 Note: the extension may be omitted for *.rco files but must be specified for

*.rcx

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Loads a Control Object File(COF) i.e. *.rcx. and checks to see if it was properly

loaded.

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

LoadCOFsf

Description: Loads the Control Object File (*.rco or *.rcx) to the proper ActiveX control and

sets the sampling frequency of the device. This function/method is run after a

Connectxx call and clears anything in the memory buffers on the processor

device. See ReadCOF for information about establishing a connection between

an ActiveX handle and a COF without clearing a device's memory buffers.

'C' Prototype:

Arguments:

LPCTSTR *.rco file or *.rcx File name and extension

 Note: the extension may be omitted for *.rco files but

must be specified for *.rcx

float Sample Frequency Values above 50 are used for arbitrary waveform

generation.

RPcoX Real-Time Processor Control

35

0 1 2 3 4 5 6 >=50

6K 12K 25K 50K 100K 200K 400K Arbitrary

Sample

rate

ALL ALL ALL RP2

RP2.1

RL2

RV8

RX6

RX8

RZ2

RZ5

RZ6

D/A Only

RA16BA

RX5

RP2

RP2.1

RL2

RV8

RX6

RX8

RZ6

D/A

Only

RX5

RP2

RP2.1

RV8

RX6

RZ6

RV8

RX6

RV8

RX6

RX8

TechNotes: The sample frequencies are approximate and are subject to round-off error. Use

GetSFreq to determine the actual sample rate.

 Choosing a number greater than the maximum sample frequency for an RPx

device will set that device to its maximum sample rate (for example: the

maximum sample rate for an RL2 is 50 kHz (3) if the sample rate is set to 6 the

devices sample rate will be 50 kHz).

 PCM A/D and D/A equipped devices such as the RV8 and RX8 allow arbitrary

rates to be specified. The PCM converters on these devices will adjust to the

sampling rate specified without corrupting data. Sigma-Delta A/D and D/A

equipped devices such as the RX6 and RX8 must specify supported realizable

sampling rates in order to avoid data corruption. For more information on the

realizable sampling rates supported by the Sigma-Delta converters, see

Realizable Sampling Rates for the RX6. RX8 devices equipped with Sigma-

Delta converters should use the realizable sampling rates up to a maximum of

97.65625 kHz.

 To use the arbitrary sample frequency on the RV8, RX6, or RX8 use a value

greater than 50 for the sample frequency.

 Setting the sample frequency for values greater than 6 and less than 50 will

generate incorrect sample rates and the circuit will fail to run.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Loads a Control Object File(COF), sets the sample rate to 200 kHz i.e. *.rco,

and checks to see if it was properly loaded. Also returns the true sample rate of

the Device.

 [MATLAB] In addition it loads the same COF file and sets the sampling rate to

200 Hz on an RV8

MATLAB

https://www.tdt.com/files/manuals/Sys3Manual/RX6.pdf#page=8

ActiveX Reference Manual

36

Visual Basic

ReadCOF

Description: Reads the Control Object File (*.rco or *.rcx) to the proper ActiveX control.

This function gives the ActiveX handle access to circuit components and

parameters without reloading the circuit or clearing the memory buffers on the

device. If the ReadCOF file is not the same as the circuit running on the device,

the data will be erroneous. This function is primarily for use with portable or

remote processor devices such as the stingray Pocket Processor.

'C' Prototype:

Arguments:

LPCTSTR *.rco or *.rcx file File name (the extension does not need to be included).

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Reads a Control Object File(COF) i.e. *.rco or *.rcx.

MATLAB

Visual Basic

Run

Description: Starts the processor device processing chain. Run should be called after a

Connect call and LoadCOF.

'C' Prototype:

RPcoX Real-Time Processor Control

37

Arguments: None.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Goes through the connection, load and run procedure and checks to see if the

circuit is running.

MATLAB

Visual Basic

Example: Circuit Loader, page 70.

Halt

Description: Stops the processor device's processing chain.

'C' Prototype:

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Stops the processor device's processing chain.

MATLAB

Visual Basic

ActiveX Reference Manual

38

Device Status

About the Device Status Methods

The device status methods return information to specific device characteristics such as the device's

status, cycle usage, sampling frequency, number of total components in the COF file, and the

names of any of the COF file components.

Device Status Methods

➢ GetStatus

➢ GetCycUse

➢ GetSFreq

➢ GetNumOf

➢ GetNameOf

GetStatus

Description: Checks the status of the device and reports the state of various status indicators.

A 0 or 1 is reported for each indicator and each indicator is reported as a single

bit in a binary number. The binary number, including information about all

possible indicators, is returned as an integer.

 While each device type can have different status indicators, the first three bits

return the same basic status information about the connection and circuit status

on all devices. The return values in the table below are possible for the first three

status bits on all devices. However, use bit-wise operations (0/1) instead of

inspecting the integer value for best results.

 Bitmasks remain constant while integer values change as new Bitmasks are

added to GetStatus() in the future.

Integer 0 1 3 5 7

Binary 000 001 011 101 111

Status Nothing Connected Connected

and loaded

Connected

and running

Connected,

loaded, and

running

'C' Prototype:

Arguments: None

Returns: long

Return Value

(Enabled)

Status Bitmask Bit# Device

1 Connected 0000000000000001 0 All

2 Circuit loaded 0000000000000010 1 All

4 Circuit running 0000000000000100 2 All

RPcoX Real-Time Processor Control

39

8 Battery 0000000000001000 3 RA16BA

16 Amplifier

clipping on one

or more channels

0000000000010000 4 RA16BA

32 Amplifier

clipped since last

call to GetStatus

0000000000100000 5 RA16BA

64 System Armed 0000000001000000 6 RV8

128 Circuit running

(not waiting for

trigger)

0000000010000000 7 RV8

256 Trigger enable 0000000100000000 8 RV8

512 Auto Clear DAC

outs

0000001000000000 9 RV8

1024 Tick out 0000010000000000 10 RV8

2048 Clock out 0000100000000000 11 RV8

4096 zTrigA 0001000000000000 12 RV8

8192 zTrigB 0010000000000000 13 RV8

16384 External trigger 0100000000000000 14 RV8

32768 Multiple trigger 1000000000000000 15 RV8

 Note: When checking the status of the Medusa Base Station (RA16BA), ensure

that a preamplifier is properly connected and turned on. Connection status (Bit

0) will always return a 0 when a preamplifier is not properly connected. Bit 5

(amplifier clipped since last call) is reset after GetStatus is called.

 Bit-0 does not report preamplifier status when using an RZ base station. Use the

RZ LCD screen to determine PZ status.

Sample Code

Description: Checks if the circuit is loaded and running. Determines where in the loading

routine the error occurred.

MATLAB

Visual Basic

ActiveX Reference Manual

40

Example: Circuit Loader, page 70.

GetCycUse

Description: Checks the total cycle usage of a specified processor device. GetCycUse polls

the processor device and returns an integer value between (0-100).

 Note: If the value returned is greater than 100, the value will fold back within

the 0-100 range (for example, a cycle usage of 130% would return a value of

30). To determine if cycle usage is too high, lower the sampling rate by a factor

of 2. The cycle usage should be one-half the former value. (For example, if

GetCycUse returns a value of 30, halving the sample rate should reduce the

cycle usage to 15%. If, after halving the sample rate, the cycle usage is 65, you

know that the original cycle usage was 130% not 30%.)

'C' Prototype:

Arguments: None.

Returns: long Percent cycle usage.

Sample Code

Description: Warns if the cycle usage is over 90%.

MATLAB

Visual Basic

Example: Device Checker, page 71.

GetSFreq

Description: Returns the exact sampling frequency of the processor device.

'C' Prototype:

Arguments: None

Returns: float Sampling frequency.

Sample Code

Description: Checks the sampling frequency and warns if a tone frequency is below the

nyquist value of the circuit.

MATLAB

Visual Basic

RPcoX Real-Time Processor Control

41

GetNumOf

Description: Returns the number of components, parameter tags, parameter tables, or SrcFiles

in a *.rco file.

'C' Prototype:

Arguments:

LPCTSTR Name A string indicating the desired object type.

STRING

Name

Component or Helper Type

"Component" Number of processor device

components

"ParTable" Number of Parameter (Data) tables

"SrcFile" Number of Source files (Data) files

"ParTag" Number of Parameter Tags

Returns: long An integer equal to the number of objects of the specified

type.

Sample Code

Description: Finds the number of Parameter Tags and returns their StringID

MATLAB

Visual Basic

Example: Device Checker, page 71.

GetNameOf

Description: Returns the name given to a particular parameter tag, component, data table, or

source file in a processor device chain. The string 'NoName' will be returned if

the object was not explicitly named in the RPvdsEx circuit. This function can be

used in conjunction with GetNumOf() to return a list of all parameter tags in an

RCO file.

'C' Prototype:

Arguments:

LPCTSTR Name A string indicating the desired object type.

STRING Name Component Type

"Component" processor components

ActiveX Reference Manual

42

"ParTable" Parameter (Data) tables

"SrcFile" Source (Data) files

"ParTag" Parameter Tags

long Component_# The number assigned to the component in the processing

chain

Returns:

CString String ID The String ID of the component

Sample Code

Description: Finds the number of parameter tags and returns their source name.

MATLAB

Visual Basic

Example: Device Checker, page 71.

Tag Status and Manipulation

About the Tag Status and Manipulation Methods

The tag status and manipulation methods are used to read in values of the COF (Control Object

File) file's tags or write values to the tags themselves.

Tag Status Methods

➢ GetTagVal

➢ GetTagType

➢ GetTagSize

➢ ReadTag

➢ ReadTagV

➢ ReadTagVEX

Tag Manipulation Methods

➢ SetTagVal

➢ WriteTag

➢ WriteTagV

➢ WriteTagVEX

➢ ZeroTag

RPcoX Real-Time Processor Control

43

GetTagVal

Description: Returns the value of a specified parameter tag. Because parameter tags point to a

parameter input or output, GetTagVal provides a means of determining the

current value of a parameter. It can be used with all parameter types and returns

a single floating point value.

'C' Prototype:

Arguments:

LPCTSTR Name A string variable that matches exactly the name of a

parameter tag.

Returns:

float current value of tag The numerical type of the parameter does not affect the

return variable.

Sample Code

Description: Reads value of tag labeled 'RMS' and saves it to the variable rms.

MATLAB

Visual Basic

Visual C++

Examples: Variable Band-Pass filter, page 72.

 Continuous Play, page 77.

 Continuous Acquire, page 74.

 Two Channel Continuous Acquisition, page 81.

GetTagType

Description: Determines the data type of a parameter tag.

'C' Prototype:

Arguments:

LPCTSTR Name The name of a parameter tag.

Returns:

MATLAB long An Integer that maps to an ASCII character.

 Data Type Integer Value

 Data Buffer 68

 Integer 73

 Logical (1 or 0) 78

 Float(Single) 83

 Coefficient Buffer 80

 Undefined (e.g. latch output) 65

Visual Basic char An ASCII character.

 Data Type Ascii Map

 Data Buffer "D"

ActiveX Reference Manual

44

 Integer "I"

 Logical (1 or 0) "L"

 Float(Single) "S"

 Coefficient Buffer "P"

 Undefined (e.g. latch output) "A"

Sample Code

Description: Finds the data type of a particular parameter tag.

MATLAB

Visual Basic

Example: Device Checker, page 71.

GetTagSize

Description: Returns the maximum number of data points accessible through the parameter

tag.

'C' Prototype:

Arguments:

LPCTSTR Name A string variable that matches the name of a parameter

tag.

Returns: long 0= error, 1=Logic, Integer, Float (Single),>1 Data type

(Pointer to a buffer).

Sample Code

Description: Returns the number of points in the ram buffer.

MATLAB

Visual Basic

Example: Device Checker, page 71.

ReadTag

Description: Reads data from the processor device's memory into variables stored on the PC.

ReadTagV should be used with MATLAB. Other programming languages

should use ReadTag. See ReadTagVEX for alternative ways to read data.

 ReadTag can be used with any component that has a data buffer, such as:

RamBuffer, LongDynDel, FIR and so forth.

'C' Prototype:

Arguments:

LPCTSTR Name Name of parameter tag.

float* pBuf Pointer to buffer to receive data.

long nOS Number of points to offset in buffer before starting read.

long nWords Number of 32-bit words to read (Samples).

RPcoX Real-Time Processor Control

45

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Reads 1000 points from a buffer (parameter tag labeled "datain") and stores it in

a single array file (data).

Visual Basic 6

Description: Reads 1000 points from parameter tag labeled 'datain' to floating point array

called data.

Visual C++

ReadTagV

Description: Reads variables stored in the processor device's memory into a PC buffer in

variant format. ReadTagV should be used with MATLAB. Other programming

languages should use ReadTag. See ReadTagVEX for alternative storage

methods.

 ReadTagV can be used with any component that has a data buffer, such as:

RamBuffer, LongDynDel, FIR and so forth.

'C' Protoype:

Arguments:

LPCTSTR Name Name of parameter tag.

long nOS Number of points to offset in buffer before starting read.

long nWords Number of 32-bit words to read (Samples).

Returns:

Variant -1, or empty Not successful.

Variant Array Successful.

Sample Code

Description: Reads 1000 points from a buffer (parameter tag 'datain') and stores it in an array

file (Data_A) as variant values.

MATLAB

Example: Continuous Acquire, page 74.

ReadTagVEX

Description: Reads data that has been written to a parameter tag and stored on the processor

device. Data can be converted to one of five data formats (double, float, 32-, 16-

, 8-bit Integer) and stored as either an array or a matrix. The user must specify

the storage format of the data to be read (F32, 32-, 16-, or 8-bit Integer) and the

number of channels.

ActiveX Reference Manual

46

 When used to read compressed or shuffled data ReadTagVEX handles data

manipulation and storage. Shuffled data is separated into channels and stored in

a matrix. The nWords argument must be set to the number of samples in the

serial buffer and is used along with nchannels to unshuffle or expand the data.

For compressed data nWords must be set to the number of points after

compression. e.g. If the data is compressed two-folded then only 500 samples of

a 1000 point signal are contained in the serial buffer and nWords should be set

to 500 (for a compression of 4 the number of points in the buffer would be 250).

 ReadTagVEX is used with components that have a data Buffer, including:

RamBuffer, Serial Buffer, Average Buffer, LongDelay, LongDynDelay,

ShortDelay, ShortDynDelay, Biquad, IIR, FIR, HrtfFir.

 Note: ReadTagVEX and WriteTagVEX are the only read/write commands that

will work in languages other than MATLAB, VB6, and VC++

'C' Protoype:

Arguments:

LPCTSTR Name Name of parameter tag.

long nOS Number of points to offset in buffer before starting read.

long nWords Number of 32-bit words to read (Samples).

LPCTSTR Srctype Format type of data being read. Below is a list of the

storage types.

Floating Point

(32-bit)

Word

(32-bit)

Integer

(16-bit)

Byte (8-bit)

F32 I32 I16 I8

LPCTSTR Dsttype Format for storing data. MATLAB handles data as

doubles. All other languages use a variety of formats.

Double(64-

bit float)

Float

(32-

bit)

Word

(32-

bit)

Integer(16-

bit)

Byte(8-

bit)

F64 F32 I32 I16 I8

long nchannels Number of data channels (1-4). For compressed and

standard it is 1. For Shuffled data it is 2 or 4.

Returns:

Variant -1, or empty Not successful.

Variant Array Successful.

Sample Code

MATLAB

Description: Reads 1000 points from a processor device buffer (either compressed or

Standard format) and stores it in an array of 1000 points in double format.

Description: Reads 1000 points from a processor device buffer that contains a shuffled data

set (2-channels) and stores it in a matrix (2,500) in double format.

RPcoX Real-Time Processor Control

47

Visual Basic

Description: Reads 1000 points from a processor device buffer and stores it in an array of

1000 points in 16-bit Integer format.

Description: Reads 1000 points from a processor device buffer that contains a shuffled data

set (2-channels) and stores it in a matrix (2,500) in 16-bit integer format.

Example: Two Channel Continuous Acquisition, page 81.

SetTagVal

Description: Sets the value of the specified parameter tag.

'C' Prototype:

Arguments:

LPCTSTR Name Name of a parameter tag.

float Val Parameter tag value.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Sets the parameter Tag value to that of the variable "rms".

MATLAB

Visual Basic

Visual C++

Example: Band-Limited Noise, page 72.

WriteTag

Description: Writes data from the PC to a memory buffer pointed to by a parameter tag.

WriteTagV should be used with MATLAB. Other programming languages

should use WriteTag. See WriteTagVEX for alternative methods of writing data.

 WriteTag is used with the following components that have a data Buffer:

RamBuffer, Serial Buffer, Average Buffer, LongDelay, LongDynDelay,

ShortDelay, ShortDynDelay, Biquad, IIR,FIR, HrtfFir.

'C' Prototype:

Arguments:

LPCTSTR Name Name of parameter tag.

ActiveX Reference Manual

48

float* pBuf Floating point array holding data to load to the processor

device's memory.

long nOS Number of points to offset in the processor device's

memory before starting write.

long nWords Number of 32-bit words to write.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Writes 1000 points from an array named 'data' to a memory buffer on the

processor device (parameter tag labeled 'datain').

Visual Basic 6

Visual C++

WriteTagV

Description: Writes variables from the PC to a memory buffer on the processor device.

WriteTagV should be used with MATLAB. Other programming languages

should use WriteTag. WriteTagV is designed to take data in a standard

MATLAB row vector. Column vectors should be transposed.

 WriteTagV is used with the following components that have a data Buffer:

RamBuffer, Serial Buffer, Average Buffer, LongDelay, LongDynDelay,

ShortDelay, ShortDynDelay, Biquad, IIR,FIR, HrtfFir.

 Note: WriteTagV is to be used in Matlab only with data type

double. Attempting to write vectors of any other type will fail and return a zero.

 See WriteTagVEX for alternative methods of writing vectors of all other data

types.

'C' Prototype:

Arguments:

LPCTSTR Name Name of parameter tag.

long nOS Number of points to offset in buffer before starting write.

Variant &buffer Data array with the samples.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

MATLAB

Description: Writes 10000 points from an array (data) to a memory buffer on a processor

device (pointed to by the parameter tag (datain)).

RPcoX Real-Time Processor Control

49

Description: Writes 1000 points from an array (data) to a memory buffer on a processor

device (pointed to by the parameter tag (datain)).

Example: Continuous Play, page 77.

WriteTagVEX

Description: WriteTagVEX writes data stored in array or matrix format to a memory buffer

on the processor device. The data format for storage in the memory buffer can

be one of the following: 32-bit Float, 32-,16-, and 8-bit Integer formats. In

addition, data is not limited to a single array format. The organization of

variables stored in a matrix is preserved.

 WriteTagVEX is used with the following components that have a data Buffer:

RamBuffer, Serial Buffer, Average Buffer, LongDelay, LongDynDelay,

ShortDelay, ShortDynDelay, Biquad, IIR, FIR, and HrtfFir.

 Note: ReadTagVEX and WriteTagVEX are the only read/write commands that

will work in languages other than MATLAB, VB6, and VC++

'C' Protoype:

Arguments:

LPCTSTR Name Name of parameter tag.

long nOS Number of points to offset in buffer before starting write.

LPCTSTR dtype One of four data types that the data is stored in.

Floating

Point(32-bit)

Word(32-

bit)

Integer(16-

bit)

Byte(8-bit)

F32 I32 I16 I8

Variant &buffer Data array/matrix with the samples.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

MATLAB

Description: Writes 10000 points from an array to a memory buffer on a processor device in

floating point format.

Description: Writes 2000 points from a matrix (data) to a memory buffer on the processor

device (pointed to by the parameter tag (datain) in integer format (16-bit).

Visual Basic

ActiveX Reference Manual

50

Description: Writes 2000 points from a matrix (data) into a data buffer on a processor device

(pointed to by parameter tag datain).

Description: Writes a 1000 points from an array as float variables to a data buffer on a

processor device.

Example: Two-channel Playback, page 83.

ZeroTag

Description: Sets a parameter tag value to zero. When the parameter tag points to a memory

buffer, all values in the buffer are set to zero.

'C' Prototype:

Arguments:

LPCTSTR Name Name of parameter tag.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Sets membuf values to zero.

MATLAB

Visual Basic

Other

GetDevCfg

Description: GetDevCfg is used with the RV8. After setting the number of sweeps with

SetDevCfg, you can use this function to determine the number of sweeps

remaining on the RV8. At this time, only the information pertaining to the

remaining sweeps can be retrieved from the device.

'C' Prototype:

Arguments:

long address Position of a particular data value.

 Address Configuration information

 9 Sweep Count

long Wide32 Set Wide32 = 0

Returns: long The value at the memory location.

Sample Code

RPcoX Real-Time Processor Control

51

Description: Finds the number of sweeps left on the RV8.

MATLAB

Visual Basic

SetDevCfg

Description: SetDevCfg is used with the RV8. It allows direct access to memory locations for

the control of the RV8 special modes, sample number, trigger counter and bit

logic.

'C' Prototype:

Arguments:

long address Position of a device configuration value.

long value Sets the value of the device.

long Wide32 Setting Wide32=1 enables modification of the upper and

lower registers of the sample counter simultaneously.

Returns:

long 1 Successful.

long 0 Not successful.

Tech Notes:

Address Configuration information

0 Special Mode value for the RV8. The bitmask for the special mode is as follows:

The top row is the bit number, the middle row contains the integer value for

setting the bit number, and the bottom row describes the Configuration property.

0 1 2 3 4 5 6 7

1 2 4 8 16 32 64 128

Trigger

Enabled

AutoC

lr

DACs

Tick

Out

Clk

Out

UseZtr

igA

UseZT

rigB

Ext

Trig

Multiple

Trigger

1 Integer value allows user to set sample rate. Make sure the RV8 is halted before

using.

2 CountLo. The Lower 16-bits of the Sample Counter. Note use Wide32 to write

to the upper and lower counter simultaneously.

3 CountHi. The Upper 16-bits of the Sample Counter. See Note above

09 Sweep Count. Sets the number of times the RV8 can be triggered in mTrig

mode.

0a/10 OutLogic: Sets the value for a logical high. The default value for each output

channel is 0 (logical high = 1 or 'high true'). Setting OutLogic = 1 inverts the

logic (logical high = 0 or 'low true').

0b/11 InLogic: Sets the value for a logical high. See OutLogic for a description.

Enabling the Trigger Mode

The Trigger mode requires that you set two components of the Special Mode: Bitmask 1 and one

of the Three trigger types (zBUSA, zBUSB or External). Note only one of the three trigger types

ActiveX Reference Manual

52

(zBUSA, zBUSB or External) can be enabled at any time. Additional modes that might be enabled

are multiple trigger and AutoClr.

Multiple trigger allows users to trigger the RV8 with out halting and running the chain again. In

addition It allows users to set the maximum number of times a system can be triggered. To set the

Multiple Trigger requires that you also set the Sweep Count. Sweep Count can be set to any value

between 1 and 4,294,967,296.

AutoClr: AutoClr sets the DAC outs to 0. If AutoClr is not set the last value sent to the DAC's is

played out.

Setting the Sample Count

In the Trigger mode the sample count needs to be a value greater than zero otherwise the signal

will play for a long time. There are two ways to set the Sample Count. The Lower and Upper

Count addresses can be set separately or by setting wide32=1 in the SetDevCfg it allows users to

set the value for both upper and lower addresses. TDT recommends that wide32 be used to set the

value. The example below shows the difference.

Setting the Sample Count for 300,000 with wide32. In this case it is a matter of using the actual

value.

Setting the Sample Count for 300,000 without wide32.

300,000 needs to be converted to a hexadecimal value and then split into the lower and upper 16-

bit values. In this cause the lower 16-bit value is 37,856. The Upper 16-bit value is 4.

Setting Multiple Triggering

In Single Trigger mode the circuit needs to be halted and run after each trigger. In Multiple trigger

mode the circuit can be configured to be triggered several times before the circuit needs to be

halted. The code below sets the circuit to trigger 5 times before it needs to be reset. The maximum

number of times a circuit can be triggered is by setting this variable is 65535. If sweep count is set

to 0 (default) the circuit will trigger a near infinite number of times.

Using the zTRIG Option

To use the zTRIGB or UsezTRIGA option you need to use the zBUS ActiveX controls. Your code

should include a connection to the zBUS. The example code below shows how this would work.

Make sure that the ActiveX control is active in your program. Note it is not necessary to have a

Trigger component in the circuit.

MATLAB

RPcoX Real-Time Processor Control

53

SoftTrg

Description: Sends a software trigger to the processor device. There are ten software triggers

for each processor device.

 Note: Do not use software triggers for signal generation or acquisition that

requires precise timing. Software triggers are affected by USB transfer times.

Expect a 2-4 ms delay for each call to the processor device from the SoftTrg(). If

multiple devices need to be triggered simultaneously use zBusTrigA/B().

'C' Prototype:

Arguments:

long Trg_Bitn Software trigger number to send.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

MATLAB

Description: This starts one of ten possible software triggers.

Visual Basic

Description: This starts one of ten possible software triggers. It then starts another software

trigger.

Examples: Continuous Play, page 77.

 Continuous Acquire, page 74.

 Two Channel Continuous Acquire, page 81.

SendParTable

Description: Sends data from a DataTable to its output.

'C' Prototype:

Arguments:

LPCTSTR Name Name of DataTable component (not a parameter tag).

float IndexID ID number of column of data to send.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: Cycles through three filters for the same input. Allows changes in the filter

coefficients from a data table.

MATLAB

ActiveX Reference Manual

54

Visual Basic

Example: FIR filtered noise, page 80.

SendSrcFile

Description: Sends data from a data file (specified in a SourceFile Component) into the

processing chain. This allows programmers to load a data file from the PC

directly to a RAM buffer.

Tech Notes: SourceFile supports the following data types: Float Point (32-bit), Long Int(32

bit), Int (16-bit), Ascii, and Wav formats.

 SendSrcFile gives you control over the size of data transferred and the position

in the data file that SendSrcFile starts. A file can contain many waveforms that

are played at different times or in different circumstances.

 16-bit words are padded to fit the 32-bit format of the Data Buffers.

 Note that this method does not let you specify a new filename to load. This can

only be done in the RPvds circuit. If you need to load data from different files,

you would first load it into a PC buffer and then use WriteTag() to send the data

to a buffer on the processor device.

'C' Prototype:

Arguments:

LPCTSTR Name Name of DataFile Component in RPvdsEx circuit (not a

parameter tag).

long SeekOS Position in the Data file to start writing to the buffer.

long nWords Number of 32-bit words to send.

Returns:

long 0 Not successful.

long 1 Successful.

Sample Code

Description: This code finds the number of SrcFiles, gets the String ID of the last SrcFile and

sends a portion of the PC data file to the processor device.

MATLAB

Visual Basic

RPcoX Real-Time Processor Control

55

57

PA5 Programmable Attenuator

About the PA5x Methods

This section provides a listing of the available PA5x ActiveX control methods.

Programming Steps

➢ Add the PA5x ActiveX controller to your program. The ActiveX help has examples for

setting up ActiveX controllers in MATLAB, Visual Basic, and Visual C.

➢ Connect to a PA5 (USB or GB) device with the connectPA5 function.

➢ Control the PA5 with the command and control functions using the ActiveX controller.

ConnectPA5

Description: Establishes a connection with the specified device. The connection is established

through either the Optical Gigabit or USB interface. Invoking this method

causes the control to search for the specified device and establish a handle to the

associated device driver. The method will return a '1' if a connection was

successfully established or a '0' if the device is not present or if it is not

functioning properly.

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB' Optical Gigabit PO5/PO5e

 'USB' USB UZ2, UB2, UZ1, UZ4

long DevNum Logical device number. Starts with 1 and counts upward

for each device of a specified type.

Returns:

long 0 Connection not successful.

long 1 Connection successful.

Sample Code

MATLAB

Description: Connects to PA5#1 via Optical Gigabit

Visual Basic

ActiveX Reference Manual

58

Description: Connects to PA5 #2 via Optical Gigabit

Display

Description: Prints text to the PA5's LED display.

'C' Prototype:

Arguments:

LPCTSTR Text String to be printed to the display (max length eight

characters).

long Position Position in display: 0=left, 7=right.

Returns:

Boolean False (0) Not successful.

Boolean True (-1) Successful.

Sample Code

Description: Displays a warning.

MATLAB

Visual Basic

GetError

Description: Use this call to retrieve an error message or to test for an error. Returns a string

containing one of the following error messages:

 zBus Error: - This shows where the error occurred

 Call:PA5setatt - What function call was attempted

 zError:One or more arguments out of range. - Error message

'C' Prototype:

Returns:

CString error Error message.

Sample Code

Description: Checks for an error message and displays it on the PA5 if one is returned.

MATLAB

Visual Basic

PA5 Programmable Attenuator

59

GetAtten

Description: Returns the current level of attenuation on the PA5 as a value from 0-120. It is

not altered by user-defined attenuation levels.

'C' Prototype:

Returns:

float attenuation on PA5

Sample Code

MATLAB

Description: Starts an active X control for the PA5, connects to PA5 #1 through the GB port

and gets the current attenuation setting for the PA5.

Visual Basic

Description: Connects PA5 #1 through the GB and gets the current attenuation setting.

Reset

Description: Resets the PA5 and restores the factory defaults.

 Factory defaults are:

Attenuation=0.0, Step size =3.0, Update=Dynamic.

'C' Prototype:

Arguments: None

Returns:

Boolean False (0) Not successful.

Boolean True (-1) Successful.

Sample Code

Description: Starts ActiveX control, connects to the PA5 via the GB interface, and resets the

PA5 to the factory defaults (0.0 attenuation).

MATLAB

Visual Basic

SetAtten

Description: Sets attenuation on the PA5. Attenuation is a floating point value between 0.0

and 120. Values higher and lower than these values will set an error flag. You

can use GetError() to check for error messages.

ActiveX Reference Manual

60

'C' Prototype:

Arguments:

float AttVal Attenuation (0.0...120.0).

Returns:

Boolean False (0) Not successful.

 True (-1) Successful.

Sample Code

Description: Sets the Attenuation to the value given by "Atten" and checks for an error. If

"Atten" is greater than 120 or less than zero an error message is generated.

MATLAB

Visual Basic

SetUser

Description: Sets parameters for User Attenuation mode. For a complete description of how

these work, check the TDT online help. A brief description of each function is

given below along with an ActiveX example.

 Note: User values are used for comparison and display purposes only. They do

not affect the values for SetAtten() or GetAtten(). They should only be used to

quickly assess signals from several PA5's using the front panel display.

'C' Prototype:

Arguments:

long ParCode Code for specific parameter.

ParCode Parameter Constants (Name)

1 Set base attenuation (0.0 .. 120.0 dB).

Base attenuation is used when several stimulus devices (speakers) vary

in signal intensity. Setting the base for each speaker will display the

same attenuations.

2 Set dB step size (0.0 .. 120.0 dB)

3 Set Reference dB Level (0.0 .. 120.0

dB).

Reference attenuation allows the user to display smaller numbers

PA5 Programmable Attenuator

61

(including negative ones). For example, for a Reference of 120 the most

intense signal would display 120 dB on the front panel and the least

intense signal would display 0.0 under user settings.

4 Sets User Update Parameter.

DYNAMIC updates produce a continuous change in attenuation.

MANUAL update only changes the attenuation when the Select button

(dial) is pressed. The display is dimmed while changing the attenuation.

or

 for Val argument.

0

Set User Update mode to Dynamic, where attenuation is changed

as the dial is turned.

1
Set User Update mode to Manual, where attenuation is not

changed while dial is turned. Attenuation updates only when the

user presses the dial to SELECT the new value.

5 : Set minimum level of attenuation allowed

on the PA5. Used to prevent accidental output of very loud sounds.

float Val Value for given parameter code.

Returns: 0 Not successful.

 -1 Successful.

Sample Code

Description: Sets up a series of constants that match the values used for 'SetUser'. Some

parameter values for the different User functions are set. Finally the code sends

all of the variables to the PA5. The user is given 5 seconds to change the setting

and see the difference between the value that the userAtten displays and the base

value for the attenuator.

MATLAB

ActiveX Reference Manual

62

Visual Basic

63

zBUS Device

About the zBUSx Methods

 This section provides a listing of the available zBUSx ActiveX control methods.

Programming Steps

➢ Add the zBUSx ActiveX controller to your program. The ActiveX help has examples for

setting up ActiveX controllers in MATLAB, Visual Basic, and Visual C.

➢ Connect to a zBUS (USB or GB) device caddie (rack) with the connectZBUS function.

➢ Control the zBUS with the command and control functions using the ActiveX controller.

ConnectZBUS

Description: Establishes a connection with a ZBUS device interface (GB or USB).

ConnectZBUS returns 0 if unsuccessful and 1 when successful.

'C' Prototype:

Arguments:

LPCTSTR Interface Interface to which the device is connected.

 Argument Connection Part #s

 'GB ' Optical Gigabit PO5/FO5

 'USB' USB UZ1, UZ2, UB2, UZ4

 'USB3' USB 3.0 UZ3

Returns:

long 0 Connection not successful.

long 1 Connection successful.

Sample Code

Description: Connects to the ZBUS device via the Gigabit interface

MATLAB

Visual Basic

ActiveX Reference Manual

64

FlushIO

Description: Clears the input and output values on the zBUS in order to remove bad data

from the buffers.

'C' Prototype:

Arguments:

long racknum Rack number of the IO line to flush.

Returns:

long 0 Unable to Flush I/O lines.

long 1 Successfully Flushed I/O lines.

Sample Code

Description: Flushes the IO lines of zBUS device caddie 1.

MATLAB

Visual Basic

GetDeviceAddr

Description: Returns the address of a device, given the device type and device number.

'C' Prototype:

Arguments:

long Devtype ID number of the device.

PA5 RP2 RL2 RA16 RV8 RX5 RX6 RX7 RX8 RZ2 RZ5 RZ6

33 35 36 37 38 45 46 47 48 50 53 54

long devnum Device number (1-16) e.g. RP2_1 is the first RP2 in the

system (Note: Device number and physical position on

the racks can differ).

Returns:

long 0 No such device type or device number.

long n>2 Even numbers indicate position 1 and odd numbers

position 2 of the device caddie (rack).

 For example:

2 = rack 1 position 1

3 = rack 1 position 2

4 = rack 2 position 1

Sample Code

Description: Gets the address of PA5_1.

MATLAB

Visual Basic

zBUS Device

65

GetDeviceVersion

Description: Checks the version of the device, or microcode of the device (programming

information).

'C' Prototype:

Arguments:

long Devtype ID number of the device.

PA5 RP2 RL2 RA16 RV8 RX5 RX6 RX7 RX8 RZ2 RZ5 RZ6

33 35 36 37 38 45 46 47 48 50 53 54

long devnum Device number (1-16) e.g. RP2_1 is the first RP2 in the

system (Note: Device number and physical position of the

racks can differ).

Returns:

long 0 No such device type or device number.

long >16 Version of the microcode.

 TechNote: RP2.1 returns a value of 1xx (xx=version number) for the version

identification.

 RL2 Base stations return a value of 135 for the version identification.

Sample Code

Description: Checks to see if the Device has version 50 or greater of the microcode.

MATLAB

Visual Basic

GetError

Description: Returns an error description from the zBUS.

 Note: unsuccessful returns are not always the result of a zBUS error. For

example, if a device does not exist at that address a return of zero is valid. The

ActiveX controls are designed to produce few error calls.

'C' Prototype:

Arguments: None

Returns:

LPCTSTR "" No Error

LPCTSTR "(LPCTSTR)" Possible Error descriptions: All Errors begin with ZERR

ARG_OUT_OF_RANGE

UNABLE_TO_GET_XBUS_LOCK

ActiveX Reference Manual

66

UNKNOWN_ERROR

XBUS_COMMINICATION_ERROR

NO_INTERFACE_INITIALIZED

XBUS_GENERATED_ERROR

ACTIVE_ACCESS_UNAVAIL

PASSIVE_ACCESS_NOT_ALLOWED

MEMORY_ALLOC_FAILED

FAILED_READ_FROM_DEVICE

DEVICE_DRIVER_CODE_ERROR

SPECED_MEMORY_NOT_VALID

ILLEGAL_USB_DEVICE_SPECED

ZUSB_COM_ERROR

ZUSB_DEVICE_NOT_RESPOND

ZUSB_START_FAILURE

ZUSB_UNABLE_TO_ACC_DEV

CALL_NOT_SUPPORT_ON_INTER

DEVICE_SPEC_ERR

Sample Code

Description: Checks the Version number of the PA5 and returns a possible zBUS error.

MATLAB

Visual Basic

HardwareReset

Description: Resets the logical connection of the device caddie (rack) to the computer and

returns a 0. Used to clear data lines and restore connections to the devices.

'C' Prototype:

Arguments:

long racknum Caddie number to Reset.

Returns:

long 0 Successfully performed a Hardware Reset.

Sample Code

Description: Hardware reset of device caddie number 1.

MATLAB

Visual Basic

Important Note!: See Tech Note #181 for updated information on HardwareReset.

https://www.tdt.com/technotes/#0181

zBUS Device

67

zBusTrigA/zBusTrigB

Description: Triggers several processor devices simultaneously either in one rack or over all

racks. Trigger types include a single pulse varying in length (the length is

dependant on the sampling rate), a permenant logical high, or a permenant

logical low.

 Note: To generate a single sample pulse, connect an EdgeDectect component

after the zTrig component in your RPvdsEx circuit.

 Minimum delay time is 2 milliseconds per rack, e.g. if you trigger five racks the

zBusTrig requires 10 milliseconds.

 Note: Differences in sample rates will cause differences in the triggering of the

clock.

'C' Prototype:

Arguments:

long Racknum 0=all device caddies (racks) triggered n=racknum

triggered.

long Trig type 0=pulse, 1=high, 2=low.

long delay delay before trigger event occurs, must be a minimum of

2msec per rack.

Returns:

long 0 Unsuccessful.

long 1 Successful.

long Note: In v57 and above, a zero will be returned even if the trigger is actually

generated correctly. There are two ways to monitor the actual results.

 In your RPvdsEx circuit:

 Link the output of the zTrig component to a digital output on the device. This

will allow the trigger result to be viewed on the front panel of the device.

 Link a parameter tag to the output of the zTrig component and read this tag in

MATLAB, to view the results.

Sample Code

MATLAB

Description: Two RP2 (devices 1 and 2) are loaded with the same circuit. They are triggered

simultaneously using zBusTrigA. Only rack 1 receives the trigger. The delay is

set for 3 msec just as a precaution and the trigger is a pulse. Both circuits are

triggered simultaneously.

ActiveX Reference Manual

68

Visual Basic

Description: Two RP2 (devices 1 and 2) are loaded with the same circuit. They are triggered

simultaneously using zBusTrigA across all possible racks. The delay is set for 5

msec just as a precaution and the trigger is a pulse. Both circuits are triggered

simultaneously.

zBusSync

Description: Synchronizes the clocks across several device caddies (racks) to minimize drift.

The clocks that drive the DSP can drift by as little as 0.01% over several

seconds, producing clock differences of several microseconds. zBusSync

ensures synchronization across devices.

 To use zBusSync, connect the Sync lines on the UB1/UZ4 to be synchronized,

using short BNC cables and T-connectors to minimize noise.

 zBusSync uses a bitmask to identify a master and slave clocks. The first rack

'turned on' in the bitmask (according to the logical order of devices) is master

and the rest are slaves, i.e. they get their clock signal from the master device.

 This command should only be used with the UB1/UZ4 USB 1.1 interfaces. It

will always return a zero when used with any other interface type.

'C' Prototype:

Arguments:

long BitMask Racknum Bitmask values for the racknum. e.g. 5 means that device

caddie 1 is the master and device caddie 3 is the slave

synchronized clock. 6 means that device caddie 2 is the

master and device caddie 3 is the slave.

Returns:

long 0 Unsuccessful.

long 1 Successful.

Sample Code

MATLAB

Description: Synchronizes the clocks of zBus device caddies 1 and 2.

Visual Basic

Description: Synchronizes the clocks of zBus device caddies 1, 2, 3, and 4.

69

ActiveX Examples

The example programs included with the ActiveX disk are general programs that can be modified

for other purposes. Most of the examples have been developed with MATLAB and Visual Basic,

which produces very compact code without a great deal of Windows related code. Programmers

using other languages would benefit from the MATLAB and VB examples as well.

The steps generally used to develop example programs include:

Step 1: Design a circuit using RPvdsEx.

Step 2: Create a Control Object File (*.rco or *.rcx).

Step 3: Create a program that implements TDT ActiveX controls.

Complete documentation for each example is provided in the MATLAB, Visual Basic, and Visual

C++ example sections that follow.

ActiveX Reference Manual

70

MATLAB Examples

MATLAB Example: Circuit Loader

This example documents a MATLAB program that lets the user load RPvdsEx control object files

(*.rcx) and run them on Real-Time Processors.

ActiveX Methods Used

➢ ConnectRP2

➢ LoadCOF

➢ Run

➢ GetStatus

Files Used

The file required for this example can be found in: C:\TDT\ActiveX\ActXExamples\matlab

➢ Circuit_Loader.m: MATLAB (R13+) script file for loading a control object file (*.rcx)

or

➢ Circuit_Loader_R12.m: MATLAB (R12) script file for loading a control object file

(*.rcx)

Required Hardware

➢ RP2

Running the Application

To run the application:

➢ At the MATLAB prompt type "Circuit_Loader" and press the Enter key.

Program Description

The program prompts the user for the following information: Connection type (GB...), Device

number, and COF (*.rcx) name. The program then loads and runs the RPvdsEx circuit and checks

for errors using GetStatus. It also returns the ActiveX object that is controlling the device.

Relevant Code

The first line of code below sets up a processor device ActiveX control in MATLAB. The next

line connects the control to an RP2; the fourth line clears that processor device of its COF file and

any memory buffers (this call is not required). The sixth line loads a COF (*.rcx file) with the

proper path and name designated. The seventh line of code starts the circuit. The eighth line

checks the status of the circuit (7=loaded and running). All programs will use the Connect,

LoadCOF, and Run when using ActiveX controls.

ActiveX Examples

71

MATLAB Example: Device Checker

This example uses ActiveX controls to load an RPvdsEx circuit. It checks the cycle usage to see if

the circuit uses too much of the Real-Time Processor's processing time. High cycle usage (>90%)

causes erratic behavior on the Real-Time Processor. It then finds the name of each component type

and the name, data type, and size of each parameter tag.

ActiveX Methods Used

➢ GetCycUse

➢ GetNumOf

➢ GetNameOf

➢ GetTagType

➢ GetTagSize

Files Used

The files required for this example can be found in: C:\TDT\ActiveX\ActXExamples\matlab

➢ Circuit_Loader.m: MATLAB (R13+) script file for loading a control object file (*.rcx)

➢ Device_Checker.m: MATLAB (R13+) script file for checking device properties

or

➢ Circuit_Loader_R12.m: MATLAB (R12) script file for loading a control object file

(*.rcx)

➢ Device_Checker_R12.m: MATLAB (R12) script file for checking device properties

Required Hardware

➢ RP2

ActiveX Reference Manual

72

Running the Application

To run the application:

➢ At the MATLAB prompt type "Device_Checker" and the Enter key.

 This example uses Circuit_Loader.m to load the circuit.

Relevant Code

The first line checks the cycle usage of the Real-Time Processor. The second line of code finds the

number of parameter tags. A loop then determines the String ID, Data type, and Data size for each

parameter tag. The MATLAB example uses similar code for other types of components.

MATLAB Example: Band Limited Noise

This example loads an RPvdsEx circuit that generates variable intensities of band limited noise

and checks the output for clipping. User control of the frequency and intensity of the noise can be

set through the MATLAB command window.

ActiveX Methods Used

➢ SetTagVal

➢ GetTagVal

Files Used

The file required for this example can be found in: C:\TDT\ActiveX\ActXExamples\matlab

➢ Band_Limited_Noise.m: MATLAB (R13+) script file for running *.rcx file

or

➢ Band_Limited_Noise_R12.m: MATLAB (R12) script file for running *.rcx file

ActiveX Examples

73

The RPvdsEx file used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ Band_Limited_Noise.rcx

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ MATLAB

Running the Application

To run the application:

➢ In the Command Window type "Band_Limited_Noise" at the prompt.

Making the RPvdsEx Circuit

Component types required:

➢ Five parameter tags. To change the name, double-click the parameter tag and type a new

name.

o Gain - Increases the relative bandpass filtering in dB

o Freq - Center frequency of the bandpass

o BW - Width of the bandpass (3dB roll off)

o Amp - Changes the amplitude of the noise

o Enable - Starts and stops generation of the filter coefficients

o Clip - Checks to see if the signal is clipped

➢ Gaussian noise generator (waveform generator)

➢ Parametric filter coefficient generator

➢ Biquad filter

➢ Feature search

➢ Schmitt trigger

➢ DacOut

➢ BitOut

Connect the circuit as shown below:

Note: Double click on any RPvdsEx and then click on the help button to access the RPvdsEx

components help.

The two boxes represent the different parts of the circuit. The box on the left includes components

that generate (GaussNoise) and filter (ParaCoef/Biquad) the waveform. The parameter tags are

used to set the amplitude of the noise and filter parameters. The second part of the circuit, found in

the box on right, checks for clipping (signal values greater than +/- 10 Volts) and generates a high

signal on Bit 0 (M=1) of the processor device.

ActiveX Reference Manual

74

Program Description

This program controls a circuit that generates band-limited noise. The user controls the center

frequency, bandwidth, and the intensity of the filtered noise. If the parameters produce clipping

the user is prompted to change some of the parameters. The relevant code controls or receives

information about the circuit through parameter tags.

Relevant Code

The code below sets the values of a series of tags. Each tag sends the value to the component

port(s) (e.g. Gain) to which they are connected.

GetTagVal

This code checks for clipping. A parameter tag is polled once every 100 msec. It returns a one if

the signal is clipped and a zero if it is not. The GetTagVal returns the state of the Schmitt trigger

(high or low).

MATLAB Example: Continuous Acquire

This example uses a circuit that continuously saves data to a 100,000 sample buffer at 100 kHz. It

continuously reads from a serial buffer in 50,000 sample chunks and saves the first 1,000,000

samples to a f32 file.

GaussNoise

Amp=1

Shft=0

Seed=2

Rst=Run

[1:2,0]

Amp

Biquad

nBIQ=1

{>Coef}

{>Delay}

[1:3,0]

ParaCoef

Gain=1

Fc=1000

BW=100

Enab=Yes

[1:1,0]

Gain

Freq

BW

Enable

DacOut

[1:4,0]

Ch=1

FeatSrch

FC=Above

K1=10

K2=0

[1:6,0]

Schmitt

Thi=100

Tlo=0

[1:7,0]

BitOut

[1:8,0]

M=1

Clip

ActiveX Examples

75

ActiveX Methods Used

➢ ReadTagV

➢ SoftTrg

➢ GetTagVal

Files Used

The file required for this example can be found in: C:\TDT\ActiveX\ActXExamples\matlab

➢ Continuous_Acquire.m: MATLAB (R13+) script file for running *.rcx file

or

➢ Continuous_Acquire_R12.m: MATLAB (R12) script file for running *.rcx file

The RPvdsEx file used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ Continuous_Acquire.rcx: RPvdsEx circuit

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ MATLAB

Running the Application

To run the application:

➢ In the Command Window type "Continuous_Acquire" at the prompt.

Making the RPvdsEx Circuit

Component types required:

➢ Two Parameter tags. To change the name of a parameter tag, double-click on the

parameter and type a new name.

o dataout - Points to the memory buffer

o index - Points to the index of the serial buffer.

➢ Two soft triggers (Soft1 and Soft2). To change the trigger to a soft trigger, double-click

the trigger and click on the drop down menu under Trigger type. Change one to Soft1 and

the other to Soft2.

➢ AdcIn

➢ RSFlipFlop

➢ SerialBuf. To change the size of the serial buffer's memory, double-click the serial buffer

and change Size to 100000.

Connect the circuit as shown below:

Note: Double click on any RPvdsEx and then click on the help button to access the RPvdsEx

components help.

The circuit below uses a Serial Buffer to acquire a signal. The signal is captured to a serial buffer,

downloaded to the PC and stored in a file named fnoise2. To demonstrate the circuit, a Gaussian

ActiveX Reference Manual

76

noise signal is generated (not shown). Removal of the noise generator portion of the circuit does

not affect the MATLAB script.

Data is continuously acquired by channel one but is only saved to the serial buffer when the

AccEnab line is set high. The two soft-triggers control the start and stop of the data acquisition.

When Soft1 goes high, the RSFlipFlop goes high and stays high. This sets the AccEnab line high

and the serial buffer starts saving the data. The serial buffer holds 100,000 samples. When the

buffer captures more than 100,000 points the end of memory is reached, the index is reset to 0, and

any data in memory is written over. When data cannot be downloaded to the PC fast enough it gets

overwritten in the buffer.

Program Description

The program acquires 10 seconds of signal at 100 kHz sampling rate and stores it in a file. A

software trigger starts the counter and the signal is stored in the serial buffer. The serial buffer

index is polled until 50,000 points are read into the buffer. The data is then sent to an array using

ReadTagV and the data array is stored in a data file. The counter is polled until the next 50,000

points are read and the cycle is repeated. Each time the data is sent to the PC the program checks

to see if the transfer rate is fast enough. A final software trigger ends the data acquisition. The last

half second of data acquisition is plotted.

Relevant Code

This part of the code starts acquisition of the data by the serial buffer. It then checks to see if the

buffer is half-filled. Half of the buffer is acquired while the other half is being filled. This method

is called double buffering and allows for continuous acquisition data to be written to the fnoise2

file in separate half-buffer partitions. Double buffering allows the circuit to continuously acquire

data while it also writes the older data to the fnoise2 file.

SerialBuf

Size=100000

Rst=0

AccEnab=1

Write=1

Buffer [1:8 - 0]

NBlks=0

Index=0

{>Data}

index

dataout

RSFlipFlop

Set=0

Rst=0

Switch [1:5 - 0]
SoftTrig1 [1:1 - 0]

Src=Soft1

SoftTrig2 [1:3 - 0]

Src=Soft2

AdcIn

[1:7,0]

Ch=1

ActiveX Examples

77

MATLAB Example: Continuous Play

This example uses a circuit that continuously loads data to a 100,000 sample buffer at 100 kHz

and sends the signal out for play to a DAC and a MATLAB script file that continuously writes to a

serial buffer in 50,000 sample chunks.

ActiveX Methods Used

➢ WriteTagV

➢ SoftTrg

➢ GetTagVal

Files Used

The file required for this example can be found in: C:\TDT\ActiveX\ActXExamples\matlab

➢ Continuous_Play.m: MATLAB (R13+) script file for running *.rcx file

or

➢ Continuous_Play_R12.m: MATLAB (R12) script file for running *.rcx file

The RPvdsEx file used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ Continuous_Play.rcx: RPvdsEx circuit

ActiveX Reference Manual

78

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ MATLAB

Running the Application

To run the application:

➢ In the Command Window type "Continuous_Play" at the prompt.

Making the RPvdsEx Circuit

Component types required:

➢ Two parameter tags. To change the name of a parameter tag, double-click on the

parameter and type a new name.

o datain - Points to the memory buffer

o index - Points to the index of the serial buffer

➢ Two soft triggers (Soft1 and Soft2). To change the trigger to soft trigger, double-click the

trigger and select the trigger type from the drop down menu under Trigger Type. Change

one to Soft1 and the other to Soft2.

➢ DacOut

➢ RSFlipFlop

➢ SerialBuf. To change the size of the serial buffer's memory, double-click the serial buffer

and set Size to 100000.

Your circuit should look like the one below. The signal is generated on the PC and then loaded

into the serial buffer for play out.

When the Soft1 trigger goes high, the FlipFlop goes high and stays high. This sets the AccEnab

line high and the serial buffer starts sending the data out to the DAC. When the serial buffer has

played out 100,000 points the index is reset and the data at the beginning of the buffer is played

out. As long as the AccEnab is high the serial buffer will play the signal.

Program Description

The program plays a series of tones for 10 seconds. The first second of tones is loaded to the serial

buffer. A software trigger starts the counter and the signal is played out through the DAC. The

serial buffer index is polled until 50,000 points are played from the buffer. Another tone is

generated and loaded to the first half of the buffer. The counter is polled until the next 50,000

SoftTrig1 [1:1 - 0]

Src=Soft1

SoftTrig2 [1:7 - 0]

Src=Soft2

RSFlipFlop

Set=0

Rst=0

Switch [1:10 - 0]

SerialBuf

Size=100000

Rst=0

AccEnab=0

Write=0

Buffer [1:13 - 0]

NBlks=0

Index=0

{>Data}

index

datain

DacOut

Dac1 [1:14 - 0]

Ch=1

ActiveX Examples

79

points are played out and the cycle is repeated. The program checks to see if the transfer rate is

fast enough when the data is written to the buffer. A final software trigger ends the play out.

Relevant Code

This section writes the tones to the serial buffer. The first call to WriteTagV writes the signal

named s1 to the first half of the buffer and the second call writes signal s2 to the second half of the

buffer. Half of the buffer is written to, while the other half is being read to play out a tone.

This method is called double buffering and is used to read the data values of the tones into one

half of the buffer while the other half is being played out. This allows the example to play tones

continuously.

ActiveX Reference Manual

80

MATLAB Example: FIR Filtered Noise

This example documents a program that uses a noise generator to output a signal. An FIR filters

the signal and the filtered and unfiltered signals are played out of two DACs.

ActiveX Methods

➢ SendSrcFile

➢ SendParTable

Files Used

The file required for this example can be found in: C:\TDT\ActiveX\ActXExamples\matlab

➢ FIR_filtered_noise.m: MATLAB (R13+) script file for running *.rcx file

or

➢ FIR_filtered_noise_R12.m: MATLAB (R12) script file for running *.rcx file

The RPvdsEx file used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ FIR_Filtered_Noise.rcx: RPvdsEx circuit

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ MATLAB

Running the Application

To run the application:

➢ In the Command Window type "FIR_Filtered_Noise" at the prompt.

Making the RPvdsEx Circuit

Component types required:

➢ GaussNoise. To change the parameters of the noise signal double click the icon and edit

the values

➢ Data Table. The data table provided with the circuit contains the FIR filter coefficients

for low, high, and bandpass filters. The coefficients were generated in MATLAB and

pasted into the data table. You will need to use the RPvdsEx file

ActiveX Examples

81

"FIR_Filtered_Noise.rcx" which is provided in the ActiveX installation to use these filter

coefficients.

➢ FIR filter. To change the order of the FIR, double-click the component and change Order

to 100.

➢ Two DacOuts. Channel 2 plays out the unfiltered signal. Channel 1 plays out the filtered

signal.

The circuit uses a GaussNoise component to output a signal. The signal is then filtered with an

FIR (low, high or bandpass) filter whose coefficients are loaded from a data table. The signals are

played out on Channel 1(filtered) and Channel 2(unfiltered) for comparison purposes.

Each section of signal is filtered three times: a low pass filter, high pass filter, and band pass filter.

The program cycles through these three filter settings. Filters were generated in MATLAB as FIR

filters with 100 taps.

Relevant Code

MATLAB Example: Two Channel Acquisition with ReadTagVEX

This example uses a circuit that continuously acquires data from two channels at 100 kHz per

channel. It continuously reads from a serial buffer in 50,000 sample chunks and saves the data in

matrix format to disk.

ActiveX Methods

➢ ReadTagVEX

➢ SoftTrg

➢ GetTagVal

DacOut

Dac1 [1:5 - 0]

Ch=1

DacOut

Dac2 [1:2 - 0]

Ch=2

FIR

Order=100

{>Coef}

{>Delay}

FIR [1:4 - 0]

FIRfilts

= 0

GaussNoise

Amp=1

Shft=0

Seed=0

Rst=Run

GaussNoise [1:1 - 0]

ActiveX Reference Manual

82

Files Used

The file required for this example can be found in: C:\TDT\ActiveX\ActXExamples\matlab

➢ TwoCh_Continuous_Acquire.m: MATLAB (R13+) script file for running *.rcx file

or

➢ TwoCh_Continuous_Acquire_R12.m: MATLAB (R12) script file for running *.rcx file

The RPvdsEx file used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ TwoCh_Continuous_Acquire.rcx: RPvdsEx circuit

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ MATLAB

Running the Application

To run the application:

➢ In the Command window type "TwoCh_Continuous_Acquire" at the prompt.

Making the RPvdsEx Circuit

Component types required:

➢ Two Parameter tags. To change the name, double-click the parameter tag and type a new

name.

o dataout - Points to the memory buffer

o index - Points to the index of the serial buffer.

➢ Two soft triggers (Soft1 and Soft2). To change the trigger to a soft trigger, double-click

the trigger and select a trigger from the drop down menu under Trigger Type. Change one

to Soft1 and the other to Soft2.

➢ Two AdcIns

➢ RSFlipFlop

➢ ShufTo16. This component reduces two 32-bit floating point input values to 16 bits each.

The 16-bit values are then stored in the upper and lower half of a 32-bit output. At a 100

kHz sampling rate, it is possible to stream two channels to disk in real-time.

➢ SerialBuf. To change the size of the serial buffer's memory, double-click the serial buffer

component and change the Size to 100000.

SerialBuf

Size=100000

Rst=0

AccEnab=1

Write=1

Buffer [1:11 - 0]

NBlks=0

Index=0

{>Data}

index

datain

RSFlipFlop

Set=0

Rst=0

Switch [1:5 - 0]

SoftTrig2 [1:1 - 0]

Src=Soft2

SoftTrig1 [1:3 - 0]

Src=Soft1

ShufTo16

SF=32767

[1:10,0]

~1

~2

AdcIn

[1:9,0]

Ch=1

AdcIn

[1:7,0]

Ch=2

ActiveX Examples

83

The circuit uses a SerialBuf and ShufTo16 to acquire two channels of data continuously at a 100

kHz sampling rate. The signal is captured to a serial buffer, downloaded to the PC, and stored in a

file.

Note: This circuit contains a Gaussian noise generator that is output to DAC OUT-1 and a tone

generator that is output to DAC OUT-2.

Program Description

The program is very similar to the Continuous Acquire MATLAB example. It acquires 10 seconds

of signal from two channels at 100 kHz sampling rate and stores it in a file.

A software trigger starts the counter and a signal is stored in the serial buffer. The counter is

polled until 50,000 points are read into the buffer. The data is then downloaded to a MATLAB

array, which is stored in a data file. The counter is polled until the next 50,000 points are read and

the cycle is repeated. Each time the data is sent to the PC the program checks to see if the transfer

rate is fast enough. A final software trigger ends the data acquisition. The last half second of the

acquired data is plotted.

Relevant Code

Check Continuous Acquire, page 74, for a description of the general program. This code reads the

data from the buffer. I16 is the source type of the data on the processor device; F64 is how the data

is stored on the PC.

MATLAB example: Two Channel Play with WriteTagVEX

This example uses a circuit that continuously plays a signal out of two channels at 100 kHz per

channel. It continuously writes to a serial buffer in 50,000 sample chunks.

ActiveX Methods

➢ WriteTagVEX

➢ SoftTrg

➢ GetTagVal

Files Used

The file required for this example can be found in: C:\TDT\ActiveX\ActXExamples\matlab

➢ TwoCh_Continuous_Play.m: MATLAB (R13+) script file for running *.rcx file

or

➢ TwoCh_Continuous_Play_R12.m: MATLAB (R12) script file for running *.rcx file

The RPvdsEx file used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ TwoCh_Continuous_Play.rcx: RPvdsEx circuit

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ MATLAB

ActiveX Reference Manual

84

Running the Application

To run the application:

➢ In the Command Window type "TwoCh_Continuous_Play" at the prompt.

Making the RPvdsEx Circuit

Component types required:

➢ Two parameter tags: To change the name of a parameter tag, double-click it then type a

new name.

o Datain - Points to the memory buffer

o Index - Points to the index of the serial buffer.

➢ Two software triggers (Soft1 and Soft2). To change the trigger to soft trigger, double-

click on the trigger and click on the drop down menu under Trigger Type. Change one to

Soft1 and the other to Soft2.

➢ Two DacOuts

➢ RSFlipFlop

➢ SplitFrom16

➢ A serial buffer (SerialBuf). To change the size of the serial buffer's memory, double-click

the component and change the Size to 100000.

The circuit below uses a SerialBuf and SplitFrom16 to play out signals to two channels

continuously. The signal is generated on the PC and then loaded into the serial buffer memory.

The circuit is similar to the Continuous Play example. When Soft Trigger 1 goes high the FlipFlop

goes high and stays high. This sets the AccEnab line high and the serial buffer starts sending the

data out to the DAC. When the serial buffer has played out 100,000 points, the index is reset and

the data at the beginning of the buffer is played out. As long as the AccEnab is high the serial

buffer will play the signal. The signal from the serial buffer memory is split into two channels

with SplitFrom16 and both channels are played out on DAC OUT-1 and DAC OUT-2.

Program Description

This program generates two tones in MATLAB, stores them in a matrix, and loads them to the

serial buffer's memory with WriteTagVEX. The general format for generating the signal with

WriteTagVEX is shown below. Otherwise, this example is similar to the Continuous Play

example.

Relevant Code

The signals must be generated and scaled to fit the format for WriteTagVEX and SplitFrom16. For

SplitFrom16 the format must be 16-bit integer. The scaling factor determines the amplitude of the

signal; in this case the scaling factor assumes a +/- 1.0 V input signal to a +/- 10 V output. The

SerialBuf

Size=100000

Rst=0

AccEnab=1

Write=1

Buffer [1:7 - 0]

NBlks=0

Index=0

{>Data}

index

datain

RSFlipFlop

Set=0

Rst=0

Switch [1:5 - 0]

SoftTrig2 [1:1 - 0]

Src=Soft2

SoftTrig1 [1:3 - 0]

Src=Soft1

SplitFrom16

SF=3.05185e-005

[1:8,0]

~1

~2

DacOut

Dac1 [1:9 - 0]

Ch=1

DacOut

Dac2 [1:11 - 0]

Ch=2

ActiveX Examples

85

floating point signals are converted to integer format with a 16-bit range. The two signals are then

placed in a matrix.

The signals are loaded with WriteTagVEX. The format below with 'I16' indicates 16-bit integer

format. WriteTagVEX determines the properties of the variant used for signal generation.

Visual C++ Examples

Visual C++ Example: Circuit Loader

This example documents a Visual C++ program that lets the user load RPvdsEx control object

files *.RCO(*.rco or *.rcx) and run them on Real-Time Processors. Up to 32 processors can be

controlled at once by this program (up to 8 RP2/RP2.1s, up to 8 RA16s, up to 8 RV8s, and up to 8

RL2s).

ActiveX Methods Used

➢ ConnectRP2

➢ LoadCOF

➢ GetStatus

➢ ClearCOF

➢ Run

➢ Halt

Files Used

The files required for this example can be found in:

C:\TDT\ActiveX\ActXExamples\vc++\CircuitLoader

➢ CircuitLoader.vcproj: Visual C++ project file

ActiveX Reference Manual

86

➢ CircuitLoaderDlg.cpp: Visual C++ code that controls the graphical user interface and

communicates with the RPvdsEx circuit; contains ActiveX components for the processor

devices

➢ CircuitLoader.exe: compiled executable; for running the example without having to start

up Visual C++

Required Hardware

➢ At least one Real-Time Processor (either RP2, RP2.1, RA16, RV8, or RL2)

Required Applications

➢ Visual C++

Running the Application

➢ Run the CircuitLoader.exe executable file from the CircuitLoader directory, or load the

CircuitLoader.vcproj project into Visual C++ and compile and run it from there.

Program Description

The Visual C++ program presents a graphical interface through which the user can load various

circuits to Real-Time processors. The user selects the type of processor device, the interface (USB

or Optical Gigabit), and the device number (from 1 to 8) through radio buttons and input boxes.

When the Load Circuit button is clicked, a CommonDialog control lets the user choose the *.rcx

file, and then it is loaded to the correct device based on the current settings of the user interface. A

label is updated to show whether the circuit was loaded successfully or if an error occurred. 32

ActiveX controls are used in the program, one for each device that can potentially be used.

Relevant Code

The code below is run when the user clicks on the "Load Circuit" button. It displays a dialog

window to select the *.rcx file, and then connects to the appropriate processor device, and loads

and runs the circuit.

ActiveX Examples

87

Visual C++ Example: Band Limited Noise

This example uses a circuit that produces band-limited noise and a Visual C++ program that lets

the user control filter and noise settings, start and stop playing, and view results.

ActiveX Methods Used

➢ ConnectRP2

➢ Run

➢ GetSFreq

➢ ClearCOF

➢ Halt

➢ GetCycUse

➢ LoadCOF

➢ SetTagVal

➢ GetStatus

➢ GetTagVal

Files Used

The files required for this example can be found in:

C:\TDT\ActiveX\ActXExamples\vc++\BandLimitedNoise

➢ BandLimitedNoise.vcproj: Visual C++ project file

ActiveX Reference Manual

88

➢ BandLimitedNoiseDlg.cpp: Visual C++ code that controls the graphical user interface

and communicates with the RPvdsEx circuit; contains an ActiveX component for the RP2

➢ BandLimitedNoise.exe: compiled executable; for running the example without having to

start up Visual C++

The RPvdsEx file used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ Band_Limited_Noise.rcx: Control File of the RPvdsEx designed circuit

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ Visual C++

Running the Application

➢ Run the BandLimitedNoise.exe executable file from the BandLimitedNoise directory, or

load the BandLimitedNoise.vcproj project into Visual C++ and compile and run it from

there.

Making the RPvdsEx Circuit

Required components:

➢ Six parameter tags (ParTag). To change the name of a parameter tag, double-click the

parameter and type a new name.

o Gain - increases the relative bandpass filtering in dB

o Freq - center frequency of the bandpass filter

o BW - width of the bandpass filter (3 dB rolloff)

o Amp - changes the amplitude of the noise

o Enable - toggles generation of the filter coefficients

o Clip - checks to see whether the signal was clipped or not

➢ Gaussian noise generator (GaussNoise)

➢ Parametric filter coefficient generator (ParaCoef)

➢ Biquad filter (Biquad)

➢ Feature search (FeatSrch)

➢ Schmitt trigger (Schmitt)

➢ Digital-to-analog converter (DacOut)

➢ Digital bit output (BitOut)

Connect the circuit as shown below. The RPx online help is accessible from within RPvdsEx if it

is required. The two boxes represent the different parts of the circuit.

ActiveX Examples

89

The box on the left has components that generate (GaussNoise) and filter (ParaCoef/Biquad) the

waveform. The parameter tags are used to set the amplitude of the noise and filter parameters. The

second part of the circuit (box on right) checks for clipping (signal values greater than +/- 10

volts) and generates a high signal on Bit 0 (M=1) of the processor device if clipping occurs.

Program Description

The Visual C++ program controls a circuit that generates band-limited noise. Buttons allow the

user to load the circuit and start and stop playing of the noise. Through input boxes, the user

controls the center frequency, bandwidth, filter gain, coefficient generation, and the intensity of

the filtered noise. The sample rate and cycle usage are displayed, along with a checkbox that is

marked if the parameters produce clipping (values beyond +/- 10 volts). The relevant code

controls or receives information about the circuit through parameter tags. An ActiveX control is

used for the RP2 device.

Relevant Code

The code below is run when the user clicks the Load Circuit button. It connects to the RP2, loads

the circuit, and makes sure everything was loaded successfully.

GaussNoise

Amp=1

Shft=0

Seed=2

Rst=Run

[1:2,0]

Amp

Biquad

nBIQ=1

{>Coef}

{>Delay}

[1:3,0]

ParaCoef

Gain=1

Fc=1000

BW=100

Enab=Yes

[1:1,0]

Gain

Freq

BW

Enable

DacOut

[1:4,0]

Ch=1

FeatSrch

FC=Above

K1=10

K2=0

[1:6,0]

Schmitt

Thi=100

Tlo=0

[1:7,0]

BitOut

[1:8,0]

M=1

Clip

ActiveX Reference Manual

90

The code below is run when the user clicks the Start Circuit button. It sets the values of each

parameter based on the values in the input boxes of the graphical interface. It then starts the circuit

running, which plays the noise out of the RP2 on output channel number 1.

Visual C++ Example: Continuous Acquire

This example uses a circuit that continually acquires data from an input channel into a 100,000

sample serial buffer at a rate of 100 kHz and a Visual C++ program that continually reads from the

serial buffer in blocks of 50,000 samples and saves the data to a file.

ActiveX Methods Used

➢ ConnectRP2

➢ Run

➢ GetTagVal

➢ LoadCOF

➢ Halt

➢ ReadTag

➢ GetStatus

➢ SoftTrg

Files Used

The files required for this example can be found in:

C:\TDT\ActiveX\ActXExamples\vc++\ContinuousAcquire

➢ ContinuousAcquire.vcproj: Visual C++ project file

➢ ContinuousAcquireDlg.cpp: Visual C++ code that controls the graphical user interface

and communicates with the RPvdsEx circuit; contains an ActiveX component for the

processor devices

ActiveX Examples

91

➢ ContinuousAcquire.exe: compiled executable; for running the example without having to

start up Visual C++

The RPvdsExfile used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ Continuous_Acquire.rcx: Control File of the RPvdsEx designed circuit

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ Visual C++

Running the Application

Run the ContinuousAcquire.exe executable file from the ContinuousAcquire directory, or load the

ContinuousAcquire.vcproj project into Visual C++ and compile and run it from there. The

program will produce an output file C:\TDT\ActiveX\ActXExamples\VC++\fnoise2.f32.

Making the RPvdsEx Circuit

Required components for acquisition:

➢ Two parameter tags (ParTag). To change the name of a parameter tag, double-click the

parameter and type a new name.

o dataout - points to the memory buffer

o index - points to the index of the serial buffer

➢ Two software triggers (TrgIn, set to Soft1 and Soft2)

➢ Analog-to-digital converter (AdcIn)

➢ RS flip-flop (RSFlipFlop)

➢ Serial buffer (SerialBuf). To change the size of the serial buffer's memory, double-click

the component and change the value for "Size" to 100000 (for this example)

Connect the circuit as shown below. The RPx online help is accessible from within RPvdsEx if it

is required.

Data is continuously acquired on channel one but is only saved to the Serial buffer when the

AccEnab line is set high. The two software triggers control the start and stop of the data

acquisition. When Soft1 goes high the RSFlipFlop goes and stays high. This sets the AccEnab line

high and the serial buffer starts saving the data. The serial buffer holds 100000 samples. When the

buffer captures more than 100000 points the end of memory is reached, the index is reset to 0, and

any data in memory is written over. When data cannot be downloaded to the PC fast enough it gets

overwritten in the buffer.

SerialBuf

Size=100000

Rst=0

AccEnab=1

Write=1

Buffer [1:8 - 0]

NBlks=0

Index=0

{>Data}

index

dataout

RSFlipFlop

Set=0

Rst=0

Switch [1:5 - 0]
SoftTrig1 [1:1 - 0]

Src=Soft1

SoftTrig2 [1:3 - 0]

Src=Soft2

AdcIn

[1:7,0]

Ch=1

ActiveX Reference Manual

92

To simulate real acquisition for this example, noise is played out on output channel 1 from the

same circuit. This should be fed back in to input channel 1 to test acquisition.

Program Description

The Visual C++ program controls the continuous acquisition circuit described above. The

graphical interface to the program consists of buttons for loading the RPvdsEx circuit, starting

acquisition, stopping acquisition, and exiting the program. The number of samples acquired and

the current index of the serial buffer are displayed while acquisition is taking place. The data is

written to an output file called "fnoise2.f32". An ActiveX control is used for the RP2 device. A

timer is used to synchronize reading of data from the buffer.

Relevant Code

The code below is run when the user clicks the Start Acquire button. It enables the timer and

performs a software trigger to start acquisition.

The code below is run when the acquisition timer goes off (every 10 ms). It alternates between

reading from the first half of the buffer and the second half of the buffer. There is also code to

check the data transfer rate and make sure it is keeping up with the acquisition input.

ActiveX Examples

93

Visual C++ Example: Continuous Play

This example uses a circuit that continually plays to an output channel data from a 100,000 sample

serial buffer at a rate of 100 kHz and a Visual C++ program that continually writes to the serial

buffer in blocks of 50,000 samples.

ActiveX Methods Used

➢ ConnectRP2

➢ SoftTrg

➢ GetTagVal

➢ LoadCOF

➢ GetTagSize

➢ WriteTag

➢ Run

Files Used

The files required for this example can be found in:

C:\TDT\ActiveX\ActXExamples\vc++\ContinuousPlay

➢ ContinuousPlay.vcproj: Visual C++ project

➢ ContinuousPlayDlg.cpp: Visual C++ form; includes graphical interface and VB code;

contains an ActiveX component for the RP2

➢ ContinuousPlay.exe: compiled executable; for running the example without having to

start up Visual C++

The RPvdsEx file used can be found in: C:\TDT\ActiveX\ActXExamples\RP_files

➢ Continuous_Play.rcx: Control File of the RPvdsEx designed circuit

Required Hardware

➢ RP2

Required Applications

➢ RPvdsEx

➢ Visual C++

Running the Application

Run the ContinuousPlay.exe executable file from the ContinuousPlay directory, or load the

ContinuousPlay.vcproj project into Visual C++ and compile and run it from there.

ActiveX Reference Manual

94

Making the RPvdsEx Circuit

Required components for acquisition:

➢ Two parameter tags (ParTag). To change the name of a parameter tag, double-click the

parameter and type a new name.

o datain - points to the memory buffer

o index - points to the index of the serial buffer

➢ Two software triggers (TrgIn, set to Soft1 and Soft2)

➢ Digital-to-analog converter (DacOut)

➢ RS flip-flop (RSFlipFlop)

➢ Serial buffer (SerialBuf). To change the size of the serial buffer's memory, double-click

the component and change the value for Size to 100000 (for this example).

Connect the circuit as shown below. The RPx online help is accessible from within RPvdsEx if it

is required.

When software trigger 1 goes high the RSFlipFlop goes and stays high. This sets the AccEnab line

high and the serial buffer starts sending the data out to the DAC. When the serial buffer has played

out 100000 points the index is reset and the data at the beginning of the buffer is played out. As

long as the AccEnab is high the Serial Buffer will play the signal.

Program Description

The program plays a series of tones for 10 seconds. The first second of tones is loaded to the serial

buffer. A software trigger starts the counter and the signal is played out through the DAC. The

Serial buffer index is polled until 50,000 points are played from the buffer. Another tone is

generated and loaded to the second half of the buffer. The counter is polled until the next 50,000

points are played out and the cycle is repeated. The program checks to see if the transfer rate is

fast enough when the data is written to the buffer. A final software trigger ends the play out.

The interface to the program consists of only a single button, which starts the playing process. An

ActiveX control is used for the RP2 device.

Relevant Code

The code below contains the main playing loop. Each time through the loop, the tones are created

at different frequencies. The first time through, the tones are written to the buffer immediately.

SoftTrig1 [1:1 - 0]

Src=Soft1

SoftTrig2 [1:7 - 0]

Src=Soft2

RSFlipFlop

Set=0

Rst=0

Switch [1:10 - 0]

SerialBuf

Size=100000

Rst=0

AccEnab=0

Write=0

Buffer [1:13 - 0]

NBlks=0

Index=0

{>Data}

index

datain

DacOut

Dac1 [1:14 - 0]

Ch=1

ActiveX Examples

95

Each time after that, the sendtones() function is called. The playing process is terminated by the

software trigger 2.

The code for the sendtones() function is shown below. It waits until the first half of the buffer is

done playing, then writes the new tone to the first half of the buffer while the second half is being

played. Then it ensures that the data was written to the buffer fast enough (otherwise the output is

unreliable because the index buffer keeps looping continuously). After that, it waits until the

second half is done playing, and then writes the new tone to the second half of the buffer. Again,

the transfer rate is checked.

ActiveX Reference Manual

96

Visual C++ Example: TDT ActiveX Console

This example documents a Visual C++ program that loads the Band_Limited_Noise.rcx control

object file and runs it on the RP2 processor through the system console. This example illustrates

how to create a formless application in Visual C++.

ActiveX Methods Used

➢ ConnectRP2

➢ LoadCOF

➢ ClearCOF

➢ Run

Files Used

The files required for this example can be found in:

C:\TDT\ActiveX\ActXExamples\vc++\TDT_ActiveX_Console

➢ TDT_ActiveX_Console.vcproj: Visual C++ project file

➢ TDT_ActiveX_Console.cpp: Visual C++ code that communicates with the RPvdsEx

circuit; contains ActiveX components for the processor devices

➢ TDT_ActiveX_Console.exe: compiled executable; for running the example without

having to start up Visual C++

Required Hardware

➢ RP2

Required Applications

➢ Visual C++

Running the Application

Run the TDT_ActiveX_Console.exe executable file from the TDT_ActiveX_Console directory, or

load the TDT_ActiveX_Console.vcproj project into Visual C++ and compile and run it from there.

Program Description

The Visual C++ program loads the Band_Limited_Noise.rcx control file and runs it on an RP2

processor device. The system console is used to connect to the device through an initialization to

the RPcoX ActiveX control. Once initialized, the ActiveX control is used to control the RP2

processor.

ActiveX Examples

97

Relevant Code

The code below is run when the user double clicks on the TDT_ActiveX_Console.exe executable

file. It displays the system console and all connection information. Once the RPcoX ActiveX

control has been initialized, the circuit can be loaded and run on the RP2 processor.

99

Revision History

Version 7.3 – February 2012

Addition of support for 64-bit operating systems

Version 7.1 – May 4, 2010

Addition of support for the RZ6 Processor and ConnectRZ6 Method

Version 6.6 - August 15, 2007

Version 6.4 - January 23, 2007

Version 6.2 - September, 8, 2006

Version 6.0 - January 18, 2006

November 11, 2004 Version 5.8

Addition of New ActiveX controls to support RXn devices:

ConnectRX5, ConnectRX6, ConnectRX7, and ConnectRX8

April 15, 2003 Version 5.0

Addition of New ActiveX controls to support RMx devices:

ConnectRM1 and ConnectRM2

ActiveX Examples has been updated and expanded to include more Visual C++

examples.

Febuary 8, 2002 Version 4.2

Addition of Gigabit interface support and removal of XBUS interface support. See

Connect device RPcoX. For how to connect to a device through the Gigabit interface.

January 8, 2002 Version 4.2

Fixed errors in ActiveX help relating to zBUS ActiveX methods.

Addition of a QuickStart Guide.

Addition of New ActiveX control:

LoadCOFsf: Allows users to select the sample rate of an rco(COF) file when the file is

loaded.

August 8, 2001 Version 4.1

ActiveX controls for the RPx families of devices.

ConnectRA16: Connects to the medusa amplifiers.

ConnectRV8: Connects to the Barracuda precision event timer.

GetDevCfg: Accesses Device settings for the Barracuda.

SetDevCfg: Sets the Device settings for the Barracuda.

ActiveX and MATLAB 6.0

MATLAB 6.0 requires that all variables that are to be used in numerical operations be

cast as Doubles. These operations include: +,-,.*,./,.^,: and others. Compare statements

such as <,>,== do not need the variable to be of type double. To change your MATLAB

code to work with MATLAB 6.0 requires that you cast the variable is a DOUBLE. For

example freq=invoke(RPx,'GetTagVal','freq') should be changed to

freq=double(invoke(RPx,'GetTagVal','freq'))in MATLAB 6.0. Note that the above values

work in MATLAB 5.3. Matlab 7 supports math on integer and single-precision data.

ActiveX Reference Manual

100

March 5, 2001 Version 3.7

New Feature

Stingray Reader. A program for acquiring data from your RPx device.

ActiveX controls for the RP family of devices

ConnectRL2: Connects to the RL2 (Stingray device)

ReadCOF: Maps the parameter tags and memory of an rco file for access by the PC. Used

with portable RPx devices.

ActiveX: controls for the zBUS.

ConnectzBUS: Makes a connection between the PC and the zBus.

FlushIO: Flushes the data buffer on the zBus.

GetDeviceAddr: Gets the address of a device type.

GetDeviceAt: Gets the device type at a particular address.

GetDeviceVer: Gets the correct version of the devices microcode.

GetError: Returns an error string.

HardwareReset: Resets the Stingray and deletes any processing chain running on the

system.

zBusTrigA/B: Triggers multiple zBus racks/RPx components simultaneously

zSync: Synchronizes the zBus clocks across several racks.

Bug fixes

zBusTrig fully functional

zSync fully functional

Problems with ReadTagVex

Example Additions

Detect Circuit for use with the Stingray.

Sept. 05, 2000 Version 3.5

Folder with ActiveX examples for MATLAB.

Revision of Connect method: Each member of the Real-time Processor family has its

Connect method. Use ConnectRP2 to connect to an RP2. Device type is a String variable

("XBUS", "USB" etc...)

New Methods:

GetStatus: Used to check device status.

GetCycUse: Checks the cycle usage of the device.

GetNameOf: Returns the String ID of a component

GetNumOf: Returns the number of Components in the *.rco file.

GetSFreq: Returns the sampling rate of the RP.

GetTagType: Determines the data type of the parameter tag.

GetTagSize: Returns the size of the data type.

ReadTagVEX: Reads data from a memory buffer and stores it in multiple data types and

formats.

WriteTagVEX: Writes several types of formatted data to a memory buffer.

ZeroTag: Sets Parameter Tag values to zero.

101

Known Anomalies

Note: Anomalies and tech notes are also available on the Web at: https://www.tdt.com/technotes/.

When using the GetStatus method with RX devices, the method returns erroneous values. RX

devices return higher bit information and this causes issues with the status values described in the

ActiveX help documentation. To access relevant status information in Matlab, use 'bitget' (or the

equivalent in other programming languages) to read each bit directly.

e.g. If all(bitget(RP.GetStatus,1:3));.

When using Delphi, ActiveX controls cannot be updated. Delphi remembers the older version of

the ActiveX controls. To update to a new version of ActiveX controls, first uninstall the earlier

version (i.e. remove it from the Delphi interface) and then install the new version.

Several errors occur when using ActiveX with MATLAB 6.0 and above. The main problem

occurs when calling the invoke function, e.g. status = invoke(RP, 'GetStatus');. When using the

return value of some of these calls, errors such as "function ___ not defined for variables of class

'int32'." result. To solve this problem cast the return values as doubles,

e.g. status = double(invoke(RP, 'GetStatus'));.

Although ActiveX seems to connect and properly load a circuit to the RA16BA (Medusa Base

Station), the GetStatus method will consistently return a 0 for connection status when a

preamplifier is not properly connected to the base station. Connection Status is located in the least

significant bit for the GetStatus command. When checking the status of the base station, ensure

that the preamplifier is properly connected and turned on.

The zBusSync ActiveX Command is used for synchronizing caddies with USB1.1 (UZ1/UZ4)

interfaces and should not be used with other types of interfaces.

Calling ReadTagV with Matlab 6.5 with the characters 'readtagv' (all lowercase) will cause a

memory leak of 8 bytes per point returned. Calling GetTagVal with Matlab 7.0 with the characters

'gettagval' (all lowercase) will cause a memory leak of 40 bytes per function invocation.

Using the ActiveX methods ConnectRxx (e.g. ConnectRX6, ConnectRP2 etc.) more than once can

sometimes cause a communication failure.

Version 57 or greater

Invoking the ActiveX zTrigA or zTrigB calls always returns a zero, irrespective of the actual

result.

HardwareReset returns a 0 if the hardware reset was performed successfully or not.

https://www.tdt.com/technotes/

103

Index

A

ActiveX methods .. 37, 44, 61, 62, 63, 74, 76,
84

MATLAB 37, 74, 75, 76, 78, 81, 84

B

Battery ... 42

C

Channel ... 84

Clear .. 38, 41, 74

Connect 27, 38, 42, 61, 74

ConnectRP2 27, 38, 74

halt ... 27, 41

Load Circuit27, 38, 42, 74

rco 27, 37, 38, 45, 47

Run38, 41, 42, 74

USB .. 27

Xbus ... 27

Zbus ... 27

Device Status 27

Control Functions....................................... 27

Cycle Usage .. 44, 75

D

DAC ... 81, 84

Data and Parameters 27

Array .. 49

Ascii ... 58

Buffers ... 49, 52

Data Acquisition 49, 52, 78

Data File .. 84

Data Table ... 84

Double Buffer 49, 52, 78

Getting Data 27, 52

Parameter Tag . 27, 45, 47, 49, 51, 52, 75,
76, 78, 81

GetTagVal 47, 51, 76, 78

ReadTag 27, 49

ReadTagV 27, 49, 78

SetTagVal 27, 47, 76

WriteTag .. 52

WriteTagV .. 52

Play ... 81

Ram Buffer 49, 52, 78, 81

Send Data 27, 51, 52, 58

SendParTable 27, 58, 84

SendSrcFile 27, 58, 84

String ID 45, 47, 49

Wave FIle .. 58

ActiveX Reference Manual

104

E

Error Checking 27, 38, 42, 44, 61, 62

GetError ... 62

Status ... 62, 74

F

Filter 49, 58, 62, 76, 84

FIR ... 58, 84

M

Mask .. 42

N

Noise .. 76, 78, 84

P

PA5 (See Programmable Attenuator) . 61, 62,
63

Programmable Attenuator 61, 62, 63

Attenuation 61, 63, 64

Get Attenuation 61, 63, 64

Set Attenuation 61, 64

SetAtten .. 61

Display ... 61, 62

Front Panel 62, 64

Reset .. 61

Set User ... 64

Base Attenuation 64

Dynamic Update 64

Manual Update 64

Minimum .. 64

Reference .. 64

SetUser .. 61, 64

Step Size ... 64

Update ... 64

R

Real-time Processor ... 27, 38, 42, 44, 45, 47

Circuit 27, 37, 41, 44, 45, 49, 57, 75, 84

Component type 45, 47, 75

Data type 47, 49, 58, 75

GetCycUse .. 75

GetNameOf 45, 47, 75

GetNumof .. 45, 75

GetTagType 45, 47, 51, 75

RP2 (See Real-time Processor) .. 27, 38, 42,
44, 45, 47

Rpvds 27, 38, 42, 44, 45, 47

S

Signal .. 81, 84

Soft Trigger 57, 78, 81

T

Tone .. 81

Trigger ... 57, 78, 81

V

VC++ ActiveX .. 18

	Before You Begin:
	Requirements
	ActiveX Updates
	Organization of the Manual

	TDT ActiveX Overview
	The ActiveX Controls
	Controlling TDT Real-Time Processors using the RPcoX ActiveX Controls

	Using ActiveX with Common Programming Languages
	MATLAB ActiveX
	Interfacing with TDT Devices through ActiveX Controls
	RP Example Programs
	Using ActiveX Controls With More Than One TDT Module
	Using Older Versions of MATLAB

	Visual Basic ActiveX
	Interfacing with TDT Devices through ActiveX Controls
	Adding ActiveX Controls in VB.NET
	Displaying ActiveX Control Methods
	Programming Multiple Modules

	Visual C++ ActiveX
	Interfacing with TDT Devices through ActiveX Controls
	Adding ActiveX Controls in VC++
	Adding a Member Variable
	Programming Multiple Modules
	Visual C++ Examples

	Delphi Function Headers
	Working with Control Object Files (*.rco and *.rcx)
	Creating an RCO for Legacy Formats

	RPcoX Real-Time Processor Control
	About the RPcoX Methods
	Device Connection
	ConnectRP2
	ConnectRA16
	ConnectRL2
	ConnectRV8
	ConnectRM1
	ConnectRM2
	ConnectRX5
	ConnectRX6
	ConnectRX7
	ConnectRX8
	ConnectRZ2
	ConnectRZ5
	ConnectRZ6

	File and Program Control
	About the File and Program Control Methods
	ClearCOF
	LoadCOF
	LoadCOFsf
	ReadCOF
	Run
	Halt

	Device Status
	About the Device Status Methods
	GetStatus
	GetCycUse
	GetSFreq
	GetNumOf
	GetNameOf

	Tag Status and Manipulation
	About the Tag Status and Manipulation Methods
	GetTagVal
	GetTagType
	GetTagSize
	ReadTag
	ReadTagV
	ReadTagVEX
	SetTagVal
	WriteTag
	WriteTagV
	WriteTagVEX
	ZeroTag

	Other
	GetDevCfg
	SetDevCfg
	SoftTrg
	SendParTable
	SendSrcFile

	PA5 Programmable Attenuator
	About the PA5x Methods
	ConnectPA5
	Display
	GetError
	GetAtten
	Reset
	SetAtten
	SetUser

	zBUS Device
	About the zBUSx Methods
	ConnectZBUS
	FlushIO
	GetDeviceAddr
	GetDeviceVersion
	GetError
	HardwareReset
	zBusTrigA/zBusTrigB
	zBusSync

	ActiveX Examples
	MATLAB Examples
	MATLAB Example: Circuit Loader
	ActiveX Methods Used
	Files Used
	Required Hardware
	Running the Application
	Program Description
	Relevant Code

	MATLAB Example: Device Checker
	ActiveX Methods Used
	Files Used
	Required Hardware
	Running the Application
	Relevant Code

	MATLAB Example: Band Limited Noise
	ActiveX Methods Used
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Program Description
	Relevant Code

	MATLAB Example: Continuous Acquire
	ActiveX Methods Used
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Program Description
	Relevant Code

	MATLAB Example: Continuous Play
	ActiveX Methods Used
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Program Description
	Relevant Code

	MATLAB Example: FIR Filtered Noise
	ActiveX Methods
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Relevant Code

	MATLAB Example: Two Channel Acquisition with ReadTagVEX
	ActiveX Methods
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Program Description
	Relevant Code

	MATLAB example: Two Channel Play with WriteTagVEX
	ActiveX Methods
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Program Description
	Relevant Code

	Visual C++ Examples
	Visual C++ Example: Circuit Loader
	ActiveX Methods Used
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Program Description
	Relevant Code

	Visual C++ Example: Band Limited Noise
	ActiveX Methods Used
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Program Description
	Relevant Code

	Visual C++ Example: Continuous Acquire
	ActiveX Methods Used
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Program Description
	Relevant Code

	Visual C++ Example: Continuous Play
	ActiveX Methods Used
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Making the RPvdsEx Circuit
	Program Description
	Relevant Code

	Visual C++ Example: TDT ActiveX Console
	ActiveX Methods Used
	Files Used
	Required Hardware
	Required Applications
	Running the Application
	Program Description
	Relevant Code

	Revision History
	Known Anomalies
	Index

